Spin Relaxation Mechanisms

Avinash Rustagi^{1, *}

¹Department of Physics, North Carolina State University, Raleigh, NC 27695 (Dated: February 27, 2018)

Highlight the physics of some spin relaxation mechanisms

There are some common spin relaxation mechanisms:

- Elliot-Yafet
- Dyakanov-Perel

I. SYMMETRY

A. Time-Reversal Symmetry

The time reversal symmetry implies that the system remains unchanged upon application of time-reversal operator. For an eigenstate characterized by quantum numbers $(\mathbf{k}, \boldsymbol{\sigma})$, time-reversal invariance means

$$\varepsilon_{\boldsymbol{k},\boldsymbol{\sigma}} = \varepsilon_{-\boldsymbol{k},-\boldsymbol{\sigma}} \tag{1}$$

which means that for every state characterized by quantum numbers $(\mathbf{k}, \boldsymbol{\sigma})$, there is a degenerate state $(-\mathbf{k}, -\boldsymbol{\sigma})$ also referred as **Kramers Degeneracy**. The time-reversal operator \hat{K} is expressed as

$$\hat{K} = -i\sigma_y \hat{C} \tag{2}$$

where σ_y is the y-Pauli matrix and \hat{C} is the conjugation operator. Effects of \hat{K} :

Note: For a particle with spin J, the representation for the operator is

$$\hat{K} = \exp\left(-i\pi J_u/\hbar\right)\hat{C} \tag{4}$$

If spin 1/2: $J_y = \hbar \sigma_y/2$ which implies $\exp(-i\pi J_y/\hbar) = -i\sigma_y$. This uses the identity (for given unit vector \boldsymbol{v})

$$\exp\left(i\theta\boldsymbol{v}\cdot\boldsymbol{\sigma}\right) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(i\theta\boldsymbol{v}\cdot\boldsymbol{\sigma}\right)^{k}$$
$$= \sum_{k=0}^{\infty} \frac{1}{(2k)!} \left(i\theta\boldsymbol{v}\cdot\boldsymbol{\sigma}\right)^{2k} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \left(i\theta\boldsymbol{v}\cdot\boldsymbol{\sigma}\right)^{2k+1}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!} \theta^{2k} \left(\boldsymbol{v}\cdot\boldsymbol{\sigma}\right)^{2k} + \sum_{k=0}^{\infty} \frac{i(-1)^{k}}{(2k+1)!} \theta^{2k+1} \left(\boldsymbol{v}\cdot\boldsymbol{\sigma}\right)^{2k+1}$$
(5)

Since $(\boldsymbol{v} \cdot \boldsymbol{\sigma})^{2k} = I$ given \boldsymbol{v} is a unit vector. Therefore

$$\exp\left(i\theta\boldsymbol{v}\cdot\boldsymbol{\sigma}\right) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \theta^{2k} I + \sum_{k=0}^{\infty} \frac{i(-1)^k}{(2k+1)!} \theta^{2k+1} \left(\boldsymbol{v}\cdot\boldsymbol{\sigma}\right)$$
$$= \cos(\theta) I + i\sin(\theta) \boldsymbol{v}\cdot\boldsymbol{\sigma}$$
(6)

B. Inversion Symmetry

The spatial inversion symmetry implies that the system remains unchanged upon application of inversion operator \hat{I} . For an eigenstate characterized by quantum numbers $(\mathbf{k}, \boldsymbol{\sigma})$, time-reversal invariance means

$$\varepsilon_{\boldsymbol{k},\boldsymbol{\sigma}} = \varepsilon_{-\boldsymbol{k},\boldsymbol{\sigma}}$$

$$\tag{7}$$

which means that for every state characterized by quantum numbers $(\mathbf{k}, \boldsymbol{\sigma})$, there is a degenerate state $(-\mathbf{k}, \boldsymbol{\sigma})$. Effects of \hat{I} :

$$\begin{aligned} & \boldsymbol{k} \to -\boldsymbol{k} \\ & \boldsymbol{r} \to -\boldsymbol{r} \end{aligned} \tag{8}$$

C. Time-Reversal and Inversion Symmetry

When the system has both inversion and time-reversal symmetry

$$\varepsilon_{\boldsymbol{k},\boldsymbol{\sigma}} = \varepsilon_{-\boldsymbol{k},-\boldsymbol{\sigma}} = \varepsilon_{\boldsymbol{k},-\boldsymbol{\sigma}} = \varepsilon_{-\boldsymbol{k},\boldsymbol{\sigma}}$$

$$\tag{9}$$

which implies that for every state characterized by quantum numbers $(\mathbf{k}, \boldsymbol{\sigma})$, there is a degenerate state $(\mathbf{k}, -\boldsymbol{\sigma})$.

II. ELLIOT-YAFET MECHANISM

This mechanism is based on scattering in presence of spin-orbit coupling. We know that the presence of spin-orbit leads to mixing the the spin up/down eigenstates. Thus a general eigenfunction can be written as

$$\Psi_{\boldsymbol{k},n,+1/2}(\boldsymbol{r}) = [a_{\boldsymbol{k},n}(\boldsymbol{r})|\uparrow\rangle + b_{\boldsymbol{k},n}(\boldsymbol{r})|\downarrow\rangle] e^{i\boldsymbol{k}\cdot\boldsymbol{r}}$$
(10)

Spin-Orbit Interaction preserves time-reversal symmetry, thus the time-reversed wavefunction has the same energy

$$\hat{K}\Psi_{\boldsymbol{k},n,+1/2}(\boldsymbol{r}) = \left[a_{-\boldsymbol{k},n}^*(\boldsymbol{r})|\downarrow\rangle - b_{-\boldsymbol{k},n}^*(\boldsymbol{r})|\uparrow\rangle\right]e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \equiv \Psi_{-\boldsymbol{k},n,-1/2}(\boldsymbol{r})$$
(11)

Therefore

$$\Psi_{\boldsymbol{k},n,-1/2}(\boldsymbol{r}) = \left[a_{\boldsymbol{k},n}^*(\boldsymbol{r})|\downarrow\rangle - b_{\boldsymbol{k},n}^*(\boldsymbol{r})|\uparrow\rangle\right]e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}$$
(12)

Now if a scattering event happens which does not act in spin space e.g. impurity or phonons, the momenta of the electron changes from $k \to k'$. Thus the scattering probability to preserve/flip spin is

$$P_{\uparrow\uparrow\rightarrow\uparrow\uparrow} \propto |M_{\boldsymbol{k},\boldsymbol{k}'}|^2 |a_{\boldsymbol{k}',n}^* a_{\boldsymbol{k},n}|^2 P_{\uparrow\uparrow\rightarrow\downarrow\downarrow\rangle} \propto |M_{\boldsymbol{k},\boldsymbol{k}'}|^2 |b_{\boldsymbol{k}',n}^* a_{\boldsymbol{k},n}|^2$$
(13)

This is the basic principle of Elliot-Yafet Spin Relaxation where non-spin-flip scattering events can lead to spin relaxation.

Physically, we expect scattering rate τ^{-1} increases with increase in temperature T. Thus we can conclude that with increase in temperature, the spin relaxation rate via Elliot-Yafet mechanism also increases.

$$\tau_{EY}^{-1} \propto \tau^{-1} \propto T \tag{14}$$

III. DYAKANOV-PEREL MECHANISM

If the system has both time-reversal and inversion symmetry

$$\varepsilon_{\boldsymbol{k},\boldsymbol{\sigma}} = \varepsilon_{-\boldsymbol{k},\boldsymbol{\sigma}} = \varepsilon_{\boldsymbol{k},-\boldsymbol{\sigma}} \tag{15}$$

which implies that for a given k, there are two degenerate wavefunctions corresponding to spin up and down. Now if the system lacks inversion (in semiconductor nanostructures), only time-reversal symmetry holds

$$\varepsilon_{\boldsymbol{k},\boldsymbol{\sigma}} = \varepsilon_{-\boldsymbol{k},-\boldsymbol{\sigma}} \tag{16}$$

(1 0)

FIG. 1. No inversion symmetry: model energy dispersion

FIG. 2. Dyakanov-Perel phase relaxation. Small momentum relaxation time (red) and large momentum relaxation time (blue). Clearly the large τ deviates more and leads to more spin relaxation compared to small τ . This is counter intuitive and opposite to Elliot-Yafet.

This means that for a given wavevector \mathbf{k} , spin up and down are not degenerate. Thus we can think of spin-orbit coupling to be an effective \mathbf{k} -dependent magnetic field.

$$H_{SO} = \frac{1}{2} \boldsymbol{\Omega}(\boldsymbol{k}) \cdot \boldsymbol{\sigma} \tag{17}$$

Thus in presence of any momentum scattering, the electron sees different effective fields and precesses. This randomwalk like precession leads to spin relaxation.

In presence of a constant magnetic field, the phase of an electron increases linearly with time with slope set by the Larmor frequency. For substantial phase randomization, we need larger τ , else the deviation of phase from the constant magnetic field line is not significant. Thus

$$\tau_{DP}^{-1} \propto \tau \propto 1/T \tag{18}$$