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Highlight the physics of some spin relaxation mechanisms

There are some common spin relaxation mechanisms:

• Elliot-Yafet

• Dyakanov-Perel

I. SYMMETRY

A. Time-Reversal Symmetry

The time reversal symmetry implies that the system remains unchanged upon application of time-reversal operator.
For an eigenstate characterized by quantum numbers (k,σ), time-reversal invariance means

εk,σ = ε−k,−σ (1)

which means that for every state characterized by quantum numbers (k,σ), there is a degenerate state (−k,−σ) also

referred as Kramers Degeneracy . The time-reversal operator K̂ is expressed as

K̂ = −iσyĈ (2)

where σy is the y-Pauli matrix and Ĉ is the conjugation operator. Effects of K̂:

k→ −k
| ↑〉 → | ↓〉
| ↓〉 → −| ↑〉

(3)

Note: For a particle with spin J , the representation for the operator is

K̂ = exp (−iπJy/~) Ĉ (4)

If spin 1/2: Jy = ~σy/2 which implies exp (−iπJy/~) = −iσy. This uses the identity (for given unit vector v)
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(5)

Since (v · σ)
2k

= I given v is a unit vector. Therefore

exp (iθv · σ) =

∞∑
k=0

(−1)k

(2k) !
θ2kI +

∞∑
k=0

i(−1)k

(2k + 1) !
θ2k+1 (v · σ)

= cos(θ)I + i sin(θ)v · σ
(6)
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B. Inversion Symmetry

The spatial inversion symmetry implies that the system remains unchanged upon application of inversion operator
Î. For an eigenstate characterized by quantum numbers (k,σ), time-reversal invariance means

εk,σ = ε−k,σ (7)

which means that for every state characterized by quantum numbers (k,σ), there is a degenerate state (−k,σ).

Effects of Î:

k→ −k
r → −r

(8)

C. Time-Reversal and Inversion Symmetry

When the system has both inversion and time-reversal symmetry

εk,σ = ε−k,−σ = εk,−σ = ε−k,σ (9)

which implies that for every state characterized by quantum numbers (k,σ), there is a degenerate state (k,−σ).

II. ELLIOT-YAFET MECHANISM

This mechanism is based on scattering in presence of spin-orbit coupling. We know that the presence of spin-orbit
leads to mixing the the spin up/down eigenstates. Thus a general eigenfunction can be written as

Ψk,n,+1/2(r) = [ak,n(r)| ↑〉+ bk,n(r)| ↓〉] eik·r (10)

Spin-Orbit Interaction preserves time-reversal symmetry, thus the time-reversed wavefunction has the same energy

K̂Ψk,n,+1/2(r) =
[
a∗−k,n(r)| ↓〉 − b∗−k,n(r)| ↑〉

]
eik·r ≡ Ψ−k,n,−1/2(r) (11)

Therefore

Ψk,n,−1/2(r) =
[
a∗k,n(r)| ↓〉 − b∗k,n(r)| ↑〉

]
e−ik·r (12)

Now if a scattering event happens which does not act in spin space e.g. impurity or phonons, the momenta of the
electron changes from k→ k′. Thus the scattering probability to preserve/flip spin is

P|↑〉→|↑〉 ∝ |Mk,k′ |2|a∗k′,nak,n|2

P|↑〉→|↓〉 ∝ |Mk,k′ |2|b∗k′,nak,n|2
(13)

This is the basic principle of Elliot-Yafet Spin Relaxation where non-spin-flip scattering events can lead to spin
relaxation.
Physically, we expect scattering rate τ−1 increases with increase in temperature T . Thus we can conclude that with
increase in temperature, the spin relaxation rate via Elliot-Yafet mechanism also increases.

τ−1EY ∝ τ
−1 ∝ T (14)

III. DYAKANOV-PEREL MECHANISM

If the system has both time-reversal and inversion symmetry

εk,σ = ε−k,σ = εk,−σ (15)

which implies that for a given k, there are two degenerate wavefunctions corresponding to spin up and down. Now if
the system lacks inversion (in semiconductor nanostructures), only time-reversal symmetry holds

εk,σ = ε−k,−σ (16)
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FIG. 1. No inversion symmetry: model energy dispersion

FIG. 2. Dyakanov-Perel phase relaxation. Small momentum relaxation time (red) and large momentum relaxation time (blue).
Clearly the large τ deviates more and leads to more spin relaxation compared to small τ . This is counter intuitive and opposite
to Elliot-Yafet.

This means that for a given wavevector k, spin up and down are not degenerate. Thus we can think of spin-orbit
coupling to be an effective k-dependent magnetic field.

HSO =
1

2
Ω(k) · σ (17)

Thus in presence of any momentum scattering, the electron sees different effective fields and precesses. This random-
walk like precession leads to spin relaxation.

In presence of a constant magnetic field, the phase of an electron increases linearly with time with slope set by
the Larmor frequency. For substantial phase randomization, we need larger τ , else the deviation of phase from the
constant magnetic field line is not significant. Thus

τ−1DP ∝ τ ∝ 1/T (18)
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