Neel Skyrmion: Energetics

Avinash Rustagi*

Let us consider a exchange coupled magnetic thin film (thickness L) with an out-of-plane uniaxial easy axis, interfacial DMI (caused by a heavy metal substrate), and an externally applied magnetic field along the out-of-plane normal. The energy describing this magnet is

$$
\begin{equation*}
E_{\mathrm{total}}=E_{\mathrm{ex}}+E_{\mathrm{uni}}+E_{\mathrm{dmi}}+E_{\mathrm{z}} \tag{1}
\end{equation*}
$$

The magnetization unit vector can be described in terms of angles $\Theta(\vec{r})$ and $\Phi(\vec{r})=\nu \phi+\gamma$ which are functions of in-plane spatial coordinates $(\vec{r}=\{r \cos \phi, r \sin \phi\})$ such that

$$
\begin{align*}
E_{\mathrm{z}} & =M_{s} B L \int d S\left[1-m_{z}\right] \\
& =2 \pi M_{s} B L \int r d r[1-\cos \Theta] \\
E_{\mathrm{uni}} & =M_{s} K_{u} L \int d S\left[1-m_{z}^{2}\right] \\
& =2 \pi M_{s} K_{u} L \int r d r \sin ^{2} \Theta \\
E_{\mathrm{ex}} & =A L \int d S\left[\left(\vec{\nabla} m_{x}\right)^{2}+\left(\vec{\nabla} m_{y}\right)^{2}+\left(\vec{\nabla} m_{z}\right)^{2}\right] \tag{2}\\
& =2 \pi A L \int r d r\left[\left(\frac{d \Theta}{d r}\right)^{2}+\frac{\sin ^{2} \Theta}{r^{2}}\right] \\
E_{\mathrm{dmi}} & =D_{\mathrm{dmi}} L \int d S\left[m_{z} \vec{\nabla} \cdot \vec{m}-\vec{m} \cdot \vec{\nabla} m_{z}\right] \\
& =2 \pi D_{\mathrm{dmi}} L \cos \gamma \int r d r\left[\frac{d \Theta}{d r}+\frac{\sin 2 \Theta}{2 r}\right]
\end{align*}
$$

where ν is the vorticity (winding number; set to be 1) and γ defines the skyrmion type ($\gamma=0 / \pi$ - Neel; $\gamma= \pm \pi / 2$ Bloch). Defining polarity as

$$
\begin{equation*}
p=\frac{m_{z}(0)-m_{z}(\infty)}{2} \tag{3}
\end{equation*}
$$

and considering the situation

- where $p=1$ meaning magnetization is along +z at the skyrmion core center and along -z outside the skyrmion core, we can see that the angle Θ increases monotonically as one moves radially outward from the core center implying $d \Theta / d r>0$. On the other hand the integral of $\sin \Theta \cos \Theta$ is very small as the product has opposite signs on either side of the Skyrmion wall. Assuming that the interfacial DMI energy $D_{\text {dmi }}>0$, it can be seen that $\gamma=\pi$ will lower the energy of the system. Thus, we would have a Neel Skyrmion with $\gamma=\pi$.
- where $p=-1$ meaning magnetization is along -z at the skyrmion core center and along +z outside the skyrmion core, we can see that the angle Θ decreases monotonically as one moves radially outward from the core center implying $d \Theta / d r<0$. On the other hand the integral of $\sin \Theta \cos \Theta$ is very small as the product has opposite signs on either side of the Skyrmion wall. Assuming that the interfacial DMI energy $D_{\text {dmi }}>0$, it can be seen that $\gamma=0$ will lower the energy of the system. Thus, we would have a Neel Skyrmion with $\gamma=0$.
An ansatz for the Neel Skyrmion (of radius R_{s} and wall width w_{s}) with polarity 1 is

$$
\begin{equation*}
m_{z}=\frac{\sinh \left(R_{s} / w_{s}\right)-\sinh \left(r / w_{s}\right)}{\sinh \left(R_{s} / w_{s}\right)+\sinh \left(r / w_{s}\right)} \tag{4}
\end{equation*}
$$

equivalent to

$$
\begin{equation*}
\Theta=2 \tan ^{-1}\left[\frac{\sinh \left(R_{s} / w_{s}\right)}{\sinh \left(r / w_{s}\right)}\right] \tag{5}
\end{equation*}
$$

Following which

$$
\begin{align*}
& m_{x}=\sqrt{1-m_{z}^{2}} \cos [\nu \phi+\gamma] \tag{6}\\
& m_{y}=\sqrt{1-m_{z}^{2}} \sin [\nu \phi+\gamma]
\end{align*}
$$

Note that the ansatz can be simply generalized for Bloch skyrmions (However, we might need free energy terms corresponding to Bulk DMI and dipole-dipole interaction for understanding the stability of the soliton).

