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Scattering is one of the most important experimental probes that are particularly useful in characterizing a system.
X-ray and electron scattering provides information about the lattice, neutron scattering provides information about
the magnetic properties. Rutherford postulated the atoms being composed of a point like nucleus through scattering
experiment.

FIG. 1. Scattering cross-section schematic.

Scattering is when an incident flux of particles interact with some potential and are deflected. The information
about the scattering potential is encoded in the scattering cross-section. The differential scattering cross-section
σ(θ, φ) is the ratio of scattered flux to the incident flux i.e. the number of scattered particles per unit incident flux in
a solid angle dΩ. Assuming azimuthal symmetry, for an incident flux of particles JI , the number of particles scattered
in solid angle [Ω,Ω + dΩ] is

dn = JIσ(θ, φ)dΩ = JIσ(θ, φ) sin θdθdφ (1)

This is related to the impact factor/distance when the particles are far away from the scattering potential

dn = JIbdbdφ (2)

Thus we can read off the expression for differential scattering cross-section σ(θ, φ)

σ(θ, φ) =
b

sin θ

db

dθ
(3)

I. RUTHERFORD SCATTERING

Rutherford scattering is the scattering of a light charged particle from a heavy charged nucleus. The scattering
potential is Coulomb

V (r) =
κ

r
(4)

where r is the vector connecting the particle and the nucleus. The force is therefore

F =
κ

r2
r

r
(5)
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FIG. 2. Rutherford Scattering cross-section schematic.

As shown in the scattering schematic, the particle deflection is symmetric about the z’-axis (φ = 0). Note that φ is
not the azimuthal angle but just a variable. Given the force, we can compute the change in momentum along the
z’-axis.

F =
dp

dt
⇒ ∆pz′ =

∫
Fz′dt (6)

Let us consider, the instant when the particle is at a distance r from the scattering center shown in schematic at an
angle φ from the z’-axis.

∆pz′ =

∫
Fz′dt =

∫
F cosφdt =

∫
κ

r2
cosφdt (7)

To evaluate this integral, what comes to rescue is the conservation of angular momentum since Coulomb interaction
is a central potential (acts along the radial vector) and thus has no torque. When the particle is far away from the
scattering potential at a impact distance b and velocity v0, the angular momentum is

L = mv0b (8)

Now when the particle is at distance r from the nucleus,

L = r × p = mr × v = mr ×
[
dr

dt
r̂ + r

dφ

dt
φ̂

]
= mr2

dφ

dt
(r̂ × φ̂) (9)

Thus conservation of angular momentum implies

mv0b = mr2
dφ

dt
⇒ dt =

r2

v0b
dφ (10)

Therefore

∆pz′ =

∫
κ

r2
cosφdt =

∫
κ

r2
cosφ

r2

v0b
dφ =

κ

v0b

∫
cosφdφ (11)

The angular variable φ changes from φ< to φ>, thus the total change in z’-component of momenta is

∆pz′ =
κ

v0b

∫ φ>

φ<

cosφdφ =
κ

v0b
[sinφ> − sinφ<] (12)

Given the trajectory being symmetric about the z’-axis, φ> = −φ< and φ> + |φ<|+ θ = π

φ> =
1

2
(π − θ) φ< = −1

2
(π − θ) (13)
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Therefore

∆pz′ =
2κ

v0b
sinφ> =

2κ

v0b
sin

(
π

2
− θ

2

)
=

2κ

v0b
cos

(
θ

2

)
(14)

Assuming that the nucleus is heavy and thus the scattering of the incident particle does not change its energy what-
soever, the initial and final energy of the scattered particle are equal which means that the magnitude of momentum
stays constant.

|pf | = |pi| = p = mv0 (15)

FIG. 3. Momentum relation.

∆pz′ = |pf − pi| = 2p sin(θ/2) (16)

Therefore

2p sin(θ/2) =
2κ

v0b
cos(θ/2)⇒ b =

κ

v0p
cot(θ/2) (17)

Thus the Rutherford scattering cross section is

σ(θ) =
b

sin θ

db

dθ
=

cot(θ/2)

sin θ

(
κ

v0p

)2
1

2 sin2(θ/2)
=

(
κ

2v0p

)2
1

sin4(θ/2)
=

κ2

16E2

1

sin4(θ/2)
(18)

II. PARTIAL WAVE ANALYSIS

Let us consider the quantum mechanical treatment of the scattering phenomenon. If we consider that all incident
particles are represented by wavepackets, then the objective is to solve the Schrodinger equation for such a wavepacket

i~∂tΨ(r, t) =

[
− ~2

2m
∇2 + V (r)

]
Ψ(r, t) (19)

and subsequently determine the probability amplitude of scattered waves in a particular direction. If the particles
are incident for long times compared to the scattering time scale, then we can define a steady state situation. The
wavepacket characterized by a specific energy will then satisfy the time-independent Schrodinger equation

EΨ(r) =

[
− ~2

2m
∇2 + V (r)

]
Ψ(r) (20)

subject to the condition that the incoming wavepacket component has the wavefunction of a plane wave eik·r = eikz

i.e. k is along the z-axis. The general solution of the wavefunction far from the scattering potential region (r →∞)
will be a superposition of the incident wavefunction and the scattered wavefunction

Ψ(r) ≈ eik·r + f(θ, φ)
eikr

r
(21)
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The corresponding asymptotic flux is

j = −i ~
2m

[Ψ∗∇Ψ−∇Ψ∗Ψ]

=
~
m
k +

~
m
kr̂
|f(θ, φ)|2

r2
+O(1/r3)

(22)

The first terms corresponds to the incident flux whereas the next term is the scattered radial flux, thus the number
of particles scattered across an area element dA subtending a solid angle dΩ is

j · r̂dA =
~
m
k
|f(θ, φ)|2

r2
r2dΩ =

~
m
k|f(θ, φ)|2dΩ (23)

The differential scattering cross section i.e. the ratio of scattered to the incident flux is threfore

dσ =
m

~k
j · r̂dA = |f(θ, φ)|2dΩ (24)

The incoming plane wave can be expanded in terms of the spherical Bessel function

eikz = eikr cos θ =

∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ) (25)

where in the asymptotic limit (r →∞)

jl(kr)→
1

2ikr
[ei(kr−lπ/2) − e−i(kr−lπ/2)] =

sin(kr − lπ/2)

kr
(26)

Now let us consider the spherically symmetric scattering potential i.e. V (r) = V (r), which means that the general
solution to the Schrodinger equation is

Ψ(r, θ) =

∞∑
l=0

Rl(r)Pl(cos θ) ==

∞∑
l=0

ul(r)

r
Pl(cos θ) (27)

Thus the radial part of the Schrodinger equation is

d2ul(r)

dr2
− l(l + 1)

r2
ul(r) +

2m

~2
[E − V (r)]ul(r) = 0 (28)

If we look at the limit of r →∞, where the potential V (r)→ 0, we should recover the description of a free particle.
This means the solution of the general equation in the large distance limit should be similar to the jl(r) limit but in
principle can have a phase shift,

Rl(kr)→
sin(kr − lπ/2 + δl)

kr
(29)

where δl are the phase shifts. Now comparing the wavefunctions

∞∑
l=0

al
sin(kr − lπ/2 + δl)

kr
Pl(cos θ) =

∞∑
l=0

il(2l + 1)
sin(kr − lπ/2)

kr
Pl(cos θ) + f(θ)

eikr

r

∞∑
l=0

al
[ei(kr−lπ/2+δl) − e−i(kr−lπ/2−δl)]

2ikr
Pl(cos θ) =

∞∑
l=0

il(2l + 1)
[ei(kr−lπ/2) − e−i(kr−lπ/2)]

2ikr
Pl(cos θ) + f(θ)

eikr

r

(30)

from which we can read off (comparing the incoming plane waves)

ale
i(lπ/2−δl) = il(2l + 1)eilπ/2 (31)

Therefore

al = il(2l + 1)eiδl (32)
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and using the comparison from outgoing plane waves

∞∑
l=0

il(2l + 1)eiδl
e−i(lπ/2−δl)

2ik
Pl(cos θ) =

∞∑
l=0

il(2l + 1)
e−i(lπ/2)

2ik
Pl(cos θ) + f(θ) (33)

which implies

f(θ) =

∞∑
l=0

il(2l + 1)
e−i(lπ/2−2δl) − e−i(lπ/2)

2ik
Pl(cos θ)

=

∞∑
l=0

il(2l + 1)e−ilπ/2
e2iδl − 1

2ik
Pl(cos θ)

=

∞∑
l=0

il(2l + 1)e−ilπ/2eiδl
sin δl
k

Pl(cos θ)

=

∞∑
l=0

(2l + 1)eiδl
sin δl
k

Pl(cos θ)

(34)

The total scattering cross section is thus

σT =

∫
dσdΩ = |f(θ, φ)|2dΩ =

∞∑
l=0

∞∑
l′=0

(2l + 1)eiδl(2l′ + 1)e−iδl′
sin δl
k

sin δl′

k

∫
dΩPl(cos θ)Pl′(cos θ)

=

∞∑
l=0

∞∑
l′=0

(2l + 1)eiδl(2l′ + 1)e−iδl′
sin δl
k

sin δl′

k

4π

2l + 1
δl,l′

=

∞∑
l=0

4π(2l + 1)
sin2 δl
k2

(35)

From the above arises the Optical Theorem

Im[f(θ = 0)] =

∞∑
l=0

(2l + 1) sin δl
sin δl
k

Pl(1) =

∞∑
l=0

(2l + 1) sin δl
sin δl
k

⇒ σT =

∞∑
l=0

4π(2l + 1)
sin2 δl
k2

=
4π

k
Im[f(θ = 0)]

(36)

III. ATTRACTIVE SQUARE WELL POTENTIAL

We can understand the concept of scattering length by considering the scattering off an attractive square well
potential.

V (r) = − ~2

2m
U0Θ(R− r) (37)

which implies

d2ul(r)

dr2
− l(l + 1)

r2
ul(r) +

2m

~2
[E − V (r)]ul(r) = 0 (38)

For a particle with energy E = ~2k2/2m,

d2ul(r)

dr2
− l(l + 1)

r2
ul(r) + [k2 + U0Θ(R− r)]ul(r) = 0 (39)

At high energies, many scattering channels (l = 0, 1, 2, ...) contribute. However, in the low energy limit, the dominant
scattering channel is s-wave i.e. l = 0,

d2u0(r)

dr2
+ [k2 + U0Θ(R− r)]u0(r) = 0 (40)
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subject to the boundary condition u0(r = 0) = 0. The solution to the above is

u0(r) =

{
C sinKr, if r < R

D sin(kr + δ0), if r > R

where K2 = k2 + U0. The continuity of the wavefunction and its derivative at r = R which in turn implies

K cotKR = k cot(kR+ δ0)⇒ tan δ0 =
k tan(KR)−K tan(kR)

K + k tan(KR) tan(kR)
(41)

Expanding for low energies (small k),

tan δ0 =
k tan(KR)−K tan(kR)

K + k tan(KR) tan(kR)

δ0 ≈
k tan(KR)−KkR
K + k tan(KR)kR

≈ k tan(KR)−KkR
K

≈ kR
(

tan(KR)

KR
− 1

)
(42)

and looking at the (l = 0) partial cross-section

σl=0 = 4π
sin2 δ0
k2

=
4π

k2
1

1 + cot2(δ0)
≈ 4π

k2
δ20

≈ 4π

k2
δ20 = 4πR2

(
tan(KR)

KR
− 1

)2
(43)

This implies that the scattering cross section vanishes when tan(KR)/KR = 1.
Note that the solution for the wavefunction for r > R and in the low energy limit must satisfy

d2u0(r)

dr2
= 0⇒ u0(r) = D′(r − a0) (44)

This is only possible if in the low energy limit δ0 = −ka0. Thus the length scale a0 is the point where the extrapolated
wavefunction intersects the x-axis. In other words, it is convenient to define a scattering length such that u0(a0) = 0
for kR << 1,

u(a0) = sin(ka0 + δ0) = sin(ka0) cos(δ0) + cos(ka0) sin(δ0)

= sin(δ0)[sin(ka0) cot(δ0) + cos(ka0)]

≈ sin(δ0)[ka0 cot(δ0) + 1] low energy limit small k

(45)

which implies

a0 = − lim
k→0

1

k
tan(δ0) ≈ −R

(
tan(KR)

KR
− 1

)
where K =

√
U0 (46)

Thus the partial scattering cross section

σl=0 =
4π

k2
1

1 + cot2(δ0)
≈ 4π

k2
(ka0)2

1 + (ka0)2
≈ 4πa20 (47)

Limiting Cases:

• KR << 1 : a0 < 0 and we have negative scattering length i.e. characteristic of attraction

• KR→ π/2 : a0 diverges i.e. criterion for a single bound state

• π/2 < KR < π : a0 > 0 and we have positive scattering length i.e. characteristic of effective repulsion
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FIG. 4. Scattering Length a) a0 < 0 b) a0 = ∞ and c) a0 > 0.
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• KR→ π : a0 = 0

• π < KR < 3π/2 : a0 < 0 and we have negative scattering length i.e. characteristic of attraction

• KR→ 3π/2 : a0 diverges i.e. criterion for a second bound state

• 3π/2 < KR < 2π : a0 > 0 and we have positive scattering length i.e. characteristic of effective repulsion

and so on.

When KR = nπ, the scattering cross-section becomes zero and the scattering potential is invisible. This is known
as the Ramsauer-Townsend Effect.
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