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Ramsey measurement is done for measuring DC magnetic field. In this measurement, first a w/2 pulse is applied
to an initialized qubit. Then, the qubit is left to evolve freely for a fixed time. Following which, another /2 pulse is
applied and the state of the qubit is projectively readout.

To begin, let’s consider the action of a microwave magnetic field on qubit dynamics. This is important to design
the required 7/2 pulse. To do so, let us start with the Hamiltonian for a qubit with an oscillatory magnetic field
applied along the x-axis
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H = ?O—ll — %O’QO + QCOS((JJt + ¢)[010 + 001] (1)

where o;; = |#)(j|. We can solve this problem in the interaction picture by expressing the Hamiltonian as

H=Hy+V
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Hy = 5011 — 5000 (2)
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V= o1~ 500 + Qcos(wt + ¢)[o10 + 001]

Here A = wy — w is the detuning between the microwave field and the qubit splitting. We can now move to the
interaction picture with the RWA
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In the interaction picture, the evolution of wavefunction is governed by the interaction Hamiltonian. The eigenvalues
and eigenvectors for this Hamiltonian is

R B cos(6/2)

M=—50 )= {_ew sin(6/2) } (4)
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Py +§Q lvg) = { e—iﬁ C(OS/(G)/Q) ]

where Q = VQ2 4+ AZ and tanf = Q/A. For now, we will restrict to the case where the driving field phase ¢ = 0.
The wavefunction in the interaction picture evolves as

[0(1)) = e~ 101 (0)) ()
Lets initialize the qubit to state |¥;(0)) = |0},
[W1(0)) = [0) = cos(60/2)[v1) + sin(6/2)[vz) (6)
Thus,
(U (8)) = e~ 1|01 (0))
= cos(6/2)e” M) + sin(8/2)e 2 uy)
Therefore, the probability to find the system in the ground state
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Po(t) = |(0]T, () = %[1 1eos O + 201~ cos ] (8)



and the transition probability to get to the excited state is
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Pi(t) = 1 — Py(t) = sin® O sin? <2> = T Az sin? ;r (9)
The 7/2 pulse is of duration T such that P; = 1/2,
= 2 sin @Al (10)
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The Ramsey pulse can be modeled in terms of the evolution operator as
Ur = Ro(T)F()Ro(T) (11)
where
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where A = QT. And the free evolution operator is
eiAT/2 0
Fr) =0 e (13)
Therefore, the total evolution operator for the Ramsey pulse is
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The probability to find the system in the excited state would be
P = [(1|UR|0)]* = |(Ur)12/? (15)
Thus,
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(Ur)12 = —iﬁ {sinAcos(AT/2) - 26 sin? 3 SiH(AT/Q):| (16)
A Q A?
sin” o = 509 SlnA—ﬁ l_ﬁ (17)
Thus,

= —i[cos x cos(AT/2) — sin x sin(A7/2)] = —icos(x + AT/2)

(18)
where sin x = A/Q. Therefore
A
P, = cos? (27— + X) (19)
For the case of general phase in the second /2 pulse,
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Consequently,



NUMERICAL RESULTS

Solved using the QuTiP toolbox, the Ramsey fringes can be simulated both in the Schrodinger and interaction
picture. The driving field is modeled as
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Hy(t) = & Hygcoswt [O(T —t) + Ot =T —7) — O(t — 2T — 7)] (22)
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FIG. 1: Pulse protocol
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2: Ramsey fringes. Parameters wy =27 x 1, A =27 x 0.2, wg = wy — A, Q@ =27 x 0.4. As seen, the Ramsey
fringes oscillate at a frequency set by the detuning between the qubit splitting and the drive frequency.
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