Plasmon Pole Approximation

Avinash Rustagi ${ }^{1, *}$
${ }^{1}$ Department of Physics, North Carolina State University, Raleigh, NC 27695

(Dated: March 2, 2018)
The objective is to discuss the plasmon pole approximation for the dielectric constant.

From simple equation of motion approach of electrons in a DC electric field, we know the dielectric constant to be

$$
\begin{equation*}
\varepsilon(q=0, \omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}} \tag{1}
\end{equation*}
$$

which explains the reflection of light from metals when the frequency of light is less than the plasma frequency ω_{p}. The inverse dielectric constant can thus be expressed as

$$
\begin{align*}
\frac{1}{\varepsilon(q \rightarrow 0, \omega)} & =\frac{\omega^{2}}{(\omega+i \delta)^{2}-\omega_{p}^{2}} \tag{2}\\
& =1+\frac{\omega_{p}^{2}}{(\omega+i \delta)^{2}-\omega_{p}^{2}}
\end{align*}
$$

where δ is a infinitesimally small. The above expression has a single pole at the plasma frequency. The plasmon-pole approximation is used to construct the full dielectric function $\varepsilon(q, \omega)$ which replaces the continuum of poles in the Lindhard function by one effective plasmon-pole ω_{q}. Therefore

$$
\begin{equation*}
\frac{1}{\varepsilon(q, \omega)}=1+\frac{\omega_{p}^{2}}{(\omega+i \delta)^{2}-\omega_{q}^{2}} \tag{3}
\end{equation*}
$$

The plasmon-pole ω_{q} is set by the sum rules that the dielectric function must satisfy. From the Kramers-Kronig relation $\left(\varepsilon=\varepsilon^{\prime}+i \varepsilon^{\prime \prime}\right)$

$$
\begin{equation*}
\varepsilon^{\prime}(q, \omega)=1+\frac{2}{\pi} \mathcal{P} \int_{0}^{\infty} d \omega^{\prime} \frac{\omega^{\prime} \varepsilon^{\prime \prime}\left(q, \omega^{\prime}\right)}{\omega^{\prime 2}-\omega^{2}} \tag{4}
\end{equation*}
$$

In the long-wavelength static limit (q-very small and $\omega=0$)

$$
\begin{equation*}
\varepsilon^{\prime}(q, \omega=0)-1=\frac{\kappa^{2}}{q^{2}}=\frac{2}{\pi} \lim _{q \rightarrow 0} \int_{0}^{\infty} d \omega^{\prime} \frac{\varepsilon^{\prime \prime}\left(q, \omega^{\prime}\right)}{\omega^{\prime}} \tag{5}
\end{equation*}
$$

where κ is the Thomas-Fermi screening wavevector. Therefore

$$
\begin{align*}
\varepsilon(q, \omega) & =\frac{\omega^{2}-\omega_{q}^{2}}{(\omega+i \delta)^{2}-\left(\omega_{q}^{2}-\omega_{p}^{2}\right)} \tag{6}\\
& =\frac{\omega^{2}-\omega_{q}^{2}}{\left(\omega+i \delta-\Omega_{q}\right)\left(\omega+i \delta+\Omega_{q}\right)}
\end{align*}
$$

where $\Omega_{q}^{2}=\omega_{q}^{2}-\omega_{p}^{2}$. We can read off the imaginary part of the dielectric constant

$$
\begin{align*}
\varepsilon^{\prime \prime}(q, \omega) & =\frac{\omega^{2}-\omega_{q}^{2}}{2 \Omega_{q}} \operatorname{Im}\left[\frac{1}{\omega+i \delta-\Omega_{q}}-\frac{1}{\omega+i \delta+\Omega_{q}}\right] \tag{7}\\
& =\frac{\omega^{2}-\omega_{q}^{2}}{2 \Omega_{q}}\left[-\pi \delta\left(\omega-\Omega_{q}\right)+\pi \delta\left(\omega+\Omega_{q}\right)\right]
\end{align*}
$$

This implies

$$
\begin{align*}
\frac{\kappa^{2}}{q^{2}} & =\frac{2}{\pi} \lim _{q \rightarrow 0} \frac{\pi}{2} \int_{0}^{\infty} d \omega^{\prime} \frac{\omega^{2}-\omega_{q}^{2}}{\Omega_{q}} \frac{\delta\left(\omega-\Omega_{q}\right)}{\omega^{\prime}} \\
& =-\frac{\Omega_{q}^{2}-\omega_{q}^{2}}{\Omega_{q}^{2}}=\frac{\omega_{p}^{2}}{\Omega_{q}^{2}} \tag{8}
\end{align*}
$$

Hence

$$
\begin{align*}
\Omega_{q}^{2} & =\omega_{p}^{2} \frac{q^{2}}{\kappa^{2}} \\
\Rightarrow \omega_{q}^{2} & =\omega_{p}^{2}\left[1+\frac{q^{2}}{\kappa^{2}}\right] \tag{9}
\end{align*}
$$

Thus within the plasmon-pole approximation, the dielectric function is approximated as

$$
\begin{equation*}
\frac{1}{\varepsilon(q, \omega)}=1+\frac{\omega_{p}^{2}}{(\omega+i \delta)^{2}-\omega_{q}^{2}} \tag{10}
\end{equation*}
$$

Lundquist added a correction to simulate the contribution of pair continuum

$$
\begin{equation*}
\omega_{q}^{2}=\omega_{p}^{2}\left[1+\frac{q^{2}}{\kappa^{2}}\right]+\nu_{q}^{2}=\omega_{q}^{2}=\omega_{p}^{2}\left[1+\frac{q^{2}}{\kappa^{2}}\right]+C q^{4} \tag{11}
\end{equation*}
$$

The above expressions are valid for 3D.
For 2D:

$$
\begin{equation*}
\omega_{q}^{2}=\omega_{p}^{2}\left[1+\frac{q}{\kappa}\right]+C q^{2} \tag{12}
\end{equation*}
$$

