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Nuclear Magnetic Resonance (NMR) is a powerful experimental measurement techniques useful in characterizing
compounds with magnetic constituents. The physics of NMR is based on the nuclear magnetic moment of the nuclei
which has an angular momentum. The magnetic moment µ and the angular momentum J are related by

µ = γJ (1)

where γ is the gyromagetic ratio. In presence of a magnetic field B = B0ẑ, the magnetic energy is

U = −µ ·B = −µzB0 = −γJzB0 (2)

Considering the simplest case of a proton that has spin 1/2, Jz = m~ where m = ±1/2. This means that the

FIG. 1. Zeeman Splitting in magnetic field.

magnetic energy is minimized when the spin aligns with the magnetic field

U = −γm~B0 (3)

The energy difference between the aligned and anti-aligned configuration is expressed in terms of a frequency

∆U = ~ω0 = γ~B0 ⇒ ω0 = γB0 (4)

The frequency ω0 is the resonance frequency when energy can be absorbed by an aligned spin to become anti-aligned.
In thermal equilibrium with no magnetic field, the number of aligned N1 and anti-aligned N2 spin are equal. However,
in presence of a magnetic field

N2

N1
= exp

(
− ∆U

KBT

)
(5)

with magnetization M = (N!−N2)µ, since more spins aligned with the field to lower the magnetic energy. It is worth
emphasizing that the spins do not align in the field direction instantaneously. The z-component of magnetization Mz

grows exponentially with time and satisfies

dMz

dt
= −Mz −M0

T1
(6)

where M0 is the thermal equilibrium magnetization

M0 = Nµ tanh

(
µB0

kBT

)
N = N1 +N2 (7)

The time constant T1 is known as the ‘spin-lattice’ relaxation time. This is so because the aligning of spins happens
when individual spin lose energy to the surroundings. The surrounding that absorbs this energy is referred to as the
‘lattice’. Thus the time constant T1 is the characteristic time of this energy flow from the spins to the lattice.
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Magnetic moment in presence of a magnetic field experiences a torque. The moment precesses about the field. Only
the net magnetization in the field direction is non-zero = M0. The other components add up to zero when accounted
for all the magnetic moments. In classical mechanics

T = µ×B 1

γ

dµ

dt
= µ×B (8)

The precessional frequency is ω0. If the components of magnetic moments are added for all the protons
∑
µz = M0,∑

µx = µy = 0. This means that there is no phase relationship between the x-y components of magnetic moment of
the different protons. The torque equation can be generalized to an equation for the magnetization

dM

dt
= γM ×B (9)

It is possible to create a transverse magnetization by application of a radio frequency pulsed magnetic field. Sup-
pose in addition to the constant magnetic field B0ẑ, we apply a rotating (circularly polarized) magnetic field
B1 (cosωt x̂+ sinωt ŷ) in the x-y plane. This situation can best be applied by moving to a rotating frame (x̂, ŷ, ẑ)→
(x̂∗, ŷ∗, ẑ∗). To analyze this, we need to figure out the magnetic field seen in the rotating frame. If we move to a
rotating frame that rotates with frequency ω, the moving observer sees a constant field B1 along the x∗-direction.

If we had a constant field in the z∗-direction, we know that the magnetization precesses about the field with Larmor
frequency. If we are in a frame that rotates with Larmor frequency, the magnetization will appear stationary to us.
This can only happen if the torque acting the magnetization is zero. Hence the net magnetic field is zero, which
implies that in the rotating frame = (B0 − ω0/γ)ẑ∗.

FIG. 2. Effective Field in the rotating frame.

Thus for a frame rotating with frequency ω, the magnetic field in the z-direction would be = (B0 − ω/γ)ẑ∗. Thus
the net field in the rotated frame is

B∗ = (B0 − ω/γ)ẑ∗ +B1 x̂
∗ (10)

In the rotating frame

dM∗

dt
= γM∗ ×B∗ (11)

Thus if we choose ω = ω0, then we only have a constant field in the x-direction. Thus the net magnetization M∗
z now

precesses about this field. If we now turn off the B1 field when the magnetization is in the x-y plane. We can also
turn off the B1 field when the magnetization is in the -z direction, These are called

90o or π/2 pulse⇒M∗
z →M∗

y

180o or π pulse⇒M∗
z → −M∗

z

360o or 2π pulse⇒M∗
z →M∗

z

(12)

The experiment is performed in the laboratory frame where the magnetization not only precesses about B1 but also
about ẑ. Since we are dealing with pulsed B1, there are signatures after this RF field pulse is over. Suppose we
have a 90o pulse, the magnetization will be rotated into the x*-y* plane, which will subsequently precess about the
z*-direction. The x*-y* magnetization will decay exponentially

dM∗
x

dt
= −M

∗
x

T2

dM∗
y

dt
= −

M∗
y

T2
(13)
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T2 is the spin-spin relaxation time. This can be understood since each proton produces a magnetic field which interacts
with other protons. Each of the spins that are initially in phase after the 90o pulse will eventually dephase and the
net x-y magnetization goes to zero. Thus a measurement of T2 provides information of the distribution of local fields
at the nuclei sites.

In the rotating frame with frequency ω, the Bloch equation for the magnetization are

dM∗

dt
= γM∗ ×B∗ = γ(B0 − ω/γ)M∗ × ẑ∗ + γB1M

∗ × x̂∗ (14)

Including the relaxation times,

dM∗
x

dt
= (ω0 − ω)M∗

y −
M∗

x

T2
dM∗

y

dt
= −(ω0 − ω)M∗

x + γB1M
∗
z −

M∗
y

T2
dM∗

z

dt
= −γB1M

∗
y −

M∗
z −M0

T1

(15)

M∗
z = Mz since we are rotating about the z-axis. The above set of equations can be solved. Looking at times when

the pulsed B1 field is over, we can set B1 = 0 and solve the equations in the rotating frame. Using transformations,
we can obtain the magnetization in the laboratory frame.

M∗
x = Mx cosωt−My sinωt

M∗
y = Mx sinωt+My cosωt

M∗
z = Mz

(16)

The NMR experiment involves applying a RF field in the x-y plane. The coil that generates this RF field also
acts as a receiver for NMR signal. The rotating magnetization in the x-y plane generates a current picked up by
the coil. The induced current in the coil oscillates with the frequency of the precessing spin. Thus different spins
precessing with different Larmor frequencies contribute to the total induced current. The Fourier transform of the
NMR signal/induced current shows these frequencies.
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FIG. 3. Time variation of the Magnetization components in the rotating and laboratory frame.
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