Landau-Lifshitz-Gilbert - Fokker-Planck Equation

Avinash Rustagi*
(Dated: June 18, 2020)

Landau-Lifshitz-Gilbert equation (equivalent to the Landau-Lifshitz equation with renormalized parameters) governs the magnetization dynamics in an effective magnetic field \vec{B} determined by the free energy landscape. It is simple to generalize it to include a fluctuating field $\vec{b}(t)$.

$$
\begin{align*}
\frac{d \vec{M}}{d t} & =-\gamma_{G} \vec{M} \times(\vec{B}+\vec{b}(t))+\frac{\alpha}{M_{s}} \vec{M} \times \frac{d \vec{M}}{d t} \\
& =-\gamma_{G} \vec{M} \times(\vec{B}+\vec{b}(t))+\frac{\alpha}{M_{s}} \vec{M} \times\left[-\gamma_{G} \vec{M} \times(\vec{B}+\vec{b}(t))+\frac{\alpha}{M_{s}} \vec{M} \times \frac{d \vec{M}}{d t}\right] \\
& =-\gamma_{G} \vec{M} \times(\vec{B}+\vec{b}(t))-\gamma_{G} \frac{\alpha}{M_{s}} \vec{M} \times \vec{M} \times(\vec{B}+\vec{b}(t))+\frac{\alpha^{2}}{M_{s}^{2}} \vec{M} \times \vec{M} \times \frac{d \vec{M}}{d t} \tag{1}\\
& =-\gamma_{G} \vec{M} \times(\vec{B}+\vec{b}(t))-\gamma_{G} \frac{\alpha}{M_{s}} \vec{M} \times \vec{M} \times(\vec{B}+\vec{b}(t))-\alpha^{2} \frac{d \vec{M}}{d t} \\
& =-\frac{\gamma_{G}}{1+\alpha^{2}} \vec{M} \times(\vec{B}+\vec{b}(t))-\frac{\alpha \gamma_{G}}{M_{s}\left(1+\alpha^{2}\right)} \vec{M} \times \vec{M} \times(\vec{B}+\vec{b}(t))
\end{align*}
$$

Defining $\gamma=\gamma_{G} /\left(1+\alpha^{2}\right)$:

$$
\begin{equation*}
\frac{d \vec{M}}{d t}=-\gamma \vec{M} \times(\vec{B}+\vec{b}(t))-\frac{\alpha \gamma}{M_{s}} \vec{M} \times \vec{M} \times(\vec{B}+\vec{b}(t)) \tag{2}
\end{equation*}
$$

where the fluctuating field $\vec{b}(t)$ is a Gaussian stochastic variable

$$
\begin{equation*}
\left\langle b_{i}(t)\right\rangle=0 \quad\left\langle b_{i}\left(t_{1}\right) b_{j}\left(t_{2}\right)\right\rangle=2 D \delta_{i j} \delta\left(t_{1}-t_{2}\right) \tag{3}
\end{equation*}
$$

Assuming that damping is weak, we can drop the fluctuating field from the second term in the LLG equation

$$
\begin{equation*}
\frac{d \vec{M}}{d t}=-\gamma \vec{M} \times(\vec{B}+\vec{b}(t))-\frac{\alpha \gamma}{M_{s}} \vec{M} \times \vec{M} \times \vec{B} \tag{4}
\end{equation*}
$$

Considering the Fokker-Planck equation for the probability density of having magnetization \vec{M} at time t for a given realization of stochastic field is

$$
\begin{align*}
\frac{\partial}{\partial t} \rho(\vec{M}, t) & =-\frac{\partial}{\partial \vec{M}} \cdot[\dot{\vec{M}} \rho(\vec{M}, t)] \\
& =-\frac{\partial}{\partial \vec{M}} \cdot\left[\left(-\gamma \vec{M} \times(\vec{B}+\vec{b}(t))-\frac{\alpha \gamma}{M_{s}} \vec{M} \times \vec{M} \times \vec{B}\right) \rho(\vec{M}, t)\right] \\
& =\frac{\partial}{\partial \vec{M}} \cdot\left[\left(\gamma \vec{M} \times \vec{B}+\frac{\alpha \gamma}{M_{s}} \vec{M} \times \vec{M} \times \vec{B}\right) \rho(\vec{M}, t)\right]+\frac{\partial}{\partial \vec{M}} \cdot[\gamma \vec{M} \times \vec{b}(t) \rho(\vec{M}, t)] \tag{5}\\
& =\partial_{M_{i}}\left[\left(\gamma \epsilon_{i j k} M_{j} B_{k}+\frac{\alpha \gamma}{M_{s}} \epsilon_{i j k} M_{j} \epsilon_{k p q} M_{p} B_{q}\right) \rho(\vec{M}, t)\right]+\partial_{M_{i}}\left[\gamma \epsilon_{i j k} M_{j} b_{k}(t) \rho(\vec{M}, t)\right] \\
& =\left[\gamma \epsilon_{i j k} M_{j} B_{k} \partial_{M_{i}}+\frac{\alpha \gamma}{M_{s}} \epsilon_{i j k} \epsilon_{k p q} M_{j} \partial_{M_{i}} M_{p} B_{q}\right] \rho(\vec{M}, t)+\left[\gamma \epsilon_{i j k} M_{j} b_{k}(t) \partial_{M_{i}}\right] \rho(\vec{M}, t) \\
& =-L_{0} \rho(\vec{M}, t)-L_{1} \rho(\vec{M}, t)
\end{align*}
$$

where the operators L_{0} and L_{1} are

$$
\begin{align*}
L_{0} & =-\left[\gamma \epsilon_{i j k} M_{j} B_{k} \partial_{M_{i}}+\frac{\alpha \gamma}{M_{s}} \epsilon_{i j k} \epsilon_{k p q} M_{j} \partial_{M_{i}} M_{p} B_{q}\right] \tag{6}\\
L_{1} & =-\left[\gamma \epsilon_{i j k} M_{j} b_{k}(t) \partial_{M_{i}}\right]
\end{align*}
$$

To get to the observable probability density, we need to average over the various realizations of the random force $\xi(t)$

$$
\begin{equation*}
P(\vec{M}, t)=\langle\rho(\vec{M}, t)\rangle_{b} \tag{7}
\end{equation*}
$$

To evaluate this average, define

$$
\begin{equation*}
\rho(\vec{M}, t)=e^{-L_{0} t} \sigma(\vec{M}, t) \tag{8}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{\partial}{\partial t} \sigma(\vec{M}, t)=-e^{L_{0} t} L_{1} e^{-L_{0} t} \sigma(\vec{M}, t) \equiv-V(t) \sigma(\vec{M}, t) \tag{9}
\end{equation*}
$$

The formal solution to this equation is

$$
\begin{equation*}
\sigma(\vec{M}, t)=\exp \left[-\int_{0}^{t} d t_{1} V\left(t_{1}\right)\right] \sigma(\vec{M}, t=0) \tag{10}
\end{equation*}
$$

Averaging over the random force realizations

$$
\begin{equation*}
\langle\sigma(\vec{M}, t)\rangle_{\xi}=\left\langle\exp \left[-\int_{0}^{t} d t_{1} V\left(t_{1}\right)\right]\right\rangle_{b} \sigma(\vec{M}, t=0) \tag{11}
\end{equation*}
$$

which upon using the cumulant expansion relation

$$
\begin{equation*}
\left\langle e^{-i \Phi(t)}\right\rangle=\exp \left[\sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!} c_{n}\right] \tag{12}
\end{equation*}
$$

gives (assuming that the random force is Gaussian implying that only second cumulant is non-zero equivalent to stating that only even moments are non-zero)

$$
\begin{equation*}
\langle\sigma(\vec{M}, t)\rangle_{b}=\exp \left[\frac{1}{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}\left\langle V\left(t_{1}\right) V\left(t_{2}\right)\right\rangle_{b}\right] \sigma(\vec{M}, t=0) \tag{13}
\end{equation*}
$$

Thus we evaluate the average in the exponential

$$
\begin{align*}
\frac{1}{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}\left\langle V\left(t_{1}\right) V\left(t_{2}\right)\right\rangle_{b} & =\frac{1}{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}\left\langle e^{L_{0} t_{1}} \gamma \epsilon_{i j k} M_{j} b_{k}\left(t_{1}\right) \partial_{M_{i}} e^{-L_{0} t_{1}} e^{L_{0} t_{2}} \gamma \epsilon_{p q r} M_{q} b_{r}\left(t_{2}\right) \partial_{M_{p}} e^{-L_{0} t_{2}}\right\rangle_{b} \\
& =\frac{1}{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} \gamma^{2}\left\langle b_{k}\left(t_{1}\right) b_{r}\left(t_{2}\right)\right\rangle_{b} e^{L_{0} t_{1}} \epsilon_{i j k} M_{j} \partial_{M_{i}} e^{-L_{0} t_{1}} e^{L_{0} t_{2}} \epsilon_{p q r} M_{q} \partial_{M_{p}} e^{-L_{0} t_{2}} \\
& =\frac{1}{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} \gamma^{2} 2 D \delta_{k r} \delta\left(t_{1}-t_{2}\right) e^{L_{0} t_{1}} \epsilon_{i j k} M_{j} \partial_{M_{i}} e^{-L_{0} t_{1}} e^{L_{0} t_{2}} \epsilon_{p q r} M_{q} \partial_{M_{p}} e^{-L_{0} t_{2}} \\
& =D \gamma^{2} \int_{0}^{t} d t_{1} e^{L_{0} t_{1}} \epsilon_{i j k} M_{j} \partial_{M_{i} \epsilon_{p q k}} M_{q} \partial_{M_{p}} e^{-L_{0} t_{1}} \tag{14}
\end{align*}
$$

where we have used the Gaussian nature of the random field i.e. $\left\langle b_{k}\left(t_{1}\right) b_{r}\left(t_{2}\right)\right\rangle=2 D \delta_{k r} \delta\left(t_{1}-t_{2}\right)$. Thus

$$
\begin{equation*}
\langle\sigma(\vec{M}, t)\rangle_{b}=\exp \left[D \gamma^{2} \int_{0}^{t} d t_{1} e^{L_{0} t_{1}} \epsilon_{i j k} M_{j} \partial_{M_{i}} \epsilon_{p q k} M_{q} \partial_{M_{p}} e^{-L_{0} t_{1}}\right] \sigma(\vec{M}, 0) \tag{15}
\end{equation*}
$$

Taking the time-derivative of the above equation

$$
\begin{equation*}
\frac{\partial}{\partial t}\langle\sigma(\vec{M}, t)\rangle_{b}=D \gamma^{2} e^{L_{0} t} \epsilon_{i j k} M_{j} \partial_{M_{i}} \epsilon_{p q k} M_{q} \partial_{M_{p}} e^{-L_{0} t}\langle\sigma(\vec{M}, t)\rangle_{b} \tag{16}
\end{equation*}
$$

which translates to

$$
\begin{equation*}
\frac{\partial}{\partial t}\langle\rho(\vec{M}, t)\rangle_{b}=-L_{0}\langle\rho(\vec{M}, t)\rangle_{b}+D \gamma^{2} \epsilon_{i j k} M_{j} \partial_{M_{i}} \epsilon_{p q k} M_{q} \partial_{M_{p}}\langle\rho(\vec{M}, t)\rangle_{b} \tag{17}
\end{equation*}
$$

which is the Fokker-Planck equation in terms of the macroscopic probability density

$$
\begin{equation*}
\frac{\partial}{\partial t} P(\vec{M}, t)=-L_{0} P(\vec{M}, t)+D \gamma^{2} \epsilon_{i j k} M_{j} \partial_{M_{i}} \epsilon_{p q k} M_{q} \partial_{M_{p}} P(\vec{M}, t) \tag{18}
\end{equation*}
$$

which can be simplified as

$$
\begin{equation*}
\epsilon_{i j k} M_{j} \partial_{M_{i}} \epsilon_{p q k} M_{q} \partial_{M_{p}}=\partial_{M_{i}} \epsilon_{i j k} M_{j} \epsilon_{k p q} M_{q} \partial_{M_{p}}=-\partial_{M_{i}} \epsilon_{i j k} M_{j} \epsilon_{k q p} M_{q} \partial_{M_{p}} \equiv-\frac{\partial}{\partial \vec{M}} \cdot\left[\vec{M} \times \vec{M} \times \frac{\partial}{\partial \vec{M}}\right] \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
-L_{0} P(\vec{M}, t)=\frac{\partial}{\partial \vec{M}} \cdot\left[\left(\gamma \vec{M} \times \vec{B}+\frac{\alpha \gamma}{M_{s}} \vec{M} \times \vec{M} \times \vec{B}\right) P(\vec{M}, t)\right] \tag{20}
\end{equation*}
$$

Therefore, the final form of the Fokker Planck equation is

$$
\begin{align*}
\frac{\partial}{\partial t} P(\vec{M}, t) & =\frac{\partial}{\partial \vec{M}} \cdot\left[\left(\gamma \vec{M} \times \vec{B}+\frac{\alpha \gamma}{M_{s}} \vec{M} \times \vec{M} \times \vec{B}\right) P(\vec{M}, t)\right]-D \gamma^{2} \frac{\partial}{\partial \vec{M}} \cdot\left[\left(\vec{M} \times \vec{M} \times \frac{\partial}{\partial \vec{M}}\right) P(\vec{M}, t)\right] \\
& =\frac{\partial}{\partial \vec{M}} \cdot\left[\left(\gamma \vec{M} \times \vec{B}+\frac{\alpha \gamma}{M_{s}} \vec{M} \times \vec{M} \times \vec{B}\right) P(\vec{M}, t)-D \gamma^{2}\left(\vec{M} \times \vec{M} \times \frac{\partial}{\partial \vec{M}}\right) P(\vec{M}, t)\right] \tag{21}
\end{align*}
$$

Thermal Equilibrium

In absence of an external force and in thermal equilibrium $\left(\partial_{t} P=0\right)$, the probability distribution is given by the Boltzmann factor

$$
\begin{equation*}
P_{0} \propto e^{-\beta \mathcal{H}} \Rightarrow \frac{\partial}{\partial \vec{M}} P_{0}=\beta \vec{B} P_{0} \tag{22}
\end{equation*}
$$

where \mathcal{H} is the free energy and thus the effective field is

$$
\begin{equation*}
\vec{B}=-\frac{\partial \mathcal{H}}{\partial \vec{M}} \tag{23}
\end{equation*}
$$

This means that the quantity $\gamma(\vec{M} \times \vec{B}) P_{0}(\vec{M})$ is divergence-less i.e.

$$
\begin{align*}
\frac{\partial}{\partial \vec{M}} \cdot\left[(\vec{M} \times \vec{B}) P_{0}(\vec{M})\right] & =\left[\frac{\partial}{\partial \vec{M}} \cdot(\vec{M} \times \vec{B})\right] P_{0}(\vec{M})+(\vec{M} \times \vec{B}) \cdot \frac{\partial}{\partial \vec{M}} P_{0}(\vec{M}) \\
& =\left[\frac{\partial}{\partial \vec{M}} \cdot(\vec{M} \times \vec{B})\right] P_{0}(\vec{M})+\beta(\vec{M} \times \vec{B}) \cdot \vec{B} P_{0} \tag{24}\\
& =0
\end{align*}
$$

Hence, from the Fokker-Planck equation

$$
\begin{align*}
0 & =\frac{\partial}{\partial \vec{M}} \cdot\left[\left(\frac{\alpha \gamma}{M_{s}} \vec{M} \times \vec{M} \times \vec{B}\right) P_{0}(\vec{M})-D \gamma^{2}\left(\vec{M} \times \vec{M} \times \frac{\partial}{\partial \vec{M}}\right) P_{0}(\vec{M})\right] \\
& =\frac{\partial}{\partial \vec{M}} \cdot\left[\left(\frac{\alpha \gamma}{M_{s}} \vec{M} \times \vec{M} \times \vec{B}\right) P_{0}(\vec{M})-\beta D \gamma^{2}(\vec{M} \times \vec{M} \times \vec{B}) P_{0}(\vec{M})\right] \tag{25}
\end{align*}
$$

which implies

$$
\begin{equation*}
D=\frac{\alpha k_{B} T}{\gamma M_{s}} \tag{26}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left\langle b_{i}\left(t_{1}\right) b_{j}\left(t_{2}\right)\right\rangle=\frac{2 \alpha k_{B} T}{\gamma M_{s}} \delta_{i j} \delta\left(t_{1}-t_{2}\right) \tag{27}
\end{equation*}
$$

Diffusion Timescale

To consider the timescale corresponding to pure diffusion, we can set the external effective field to zero $\vec{B}=0$. Therefore, the Fokker Planck equation takes the simplified form

$$
\begin{equation*}
\frac{\partial}{\partial t} P(\vec{M}, t)=-D \gamma^{2} \frac{\partial}{\partial \vec{M}} \cdot\left[\left(\vec{M} \times \vec{M} \times \frac{\partial}{\partial \vec{M}}\right) P(\vec{M}, t)\right] \tag{28}
\end{equation*}
$$

It is clear that the only timescale in this pure diffusion process happens to be

$$
\begin{equation*}
t_{D}^{-1}=D \gamma^{2}=\frac{\alpha k_{B} T}{\gamma M_{s}} \gamma^{2}=\frac{\alpha \gamma k_{B} T}{M_{s}}=\frac{\alpha \gamma_{G} k_{B} T}{M_{s}\left(1+\alpha^{2}\right)} \tag{29}
\end{equation*}
$$

MATHEMATICAL RELATIONS

Moments and Characteristic Function

Probability distribution functions (PDF) are normalized:

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x P(x)=1 \tag{30}
\end{equation*}
$$

which implies that the Fourier component of PDF at $k=0$ is unity. The Fourier transform of the PDF can be defined as

$$
\begin{equation*}
P(k)=\int_{-\infty}^{\infty} d x e^{-i k x} P(x) \tag{31}
\end{equation*}
$$

and from the normalization condition $P(k=0)=1$. The function $P(k)$ is referred to as the "Characteristic Function". The moments of the PDF can be thereby expressed in terms of the derivatives of the Characteristic Function.

$$
\begin{align*}
& m_{1}=\langle x\rangle=\int_{-\infty}^{\infty} d x x P(x)=\left.i \frac{\partial P(k)}{\partial k}\right|_{k=0} \\
& m_{2}=\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} d x x^{2} P(x)=\left.i^{2} \frac{\partial^{2} P(k)}{\partial k^{2}}\right|_{k=0} \tag{32}\\
& \vdots \\
& m_{n}=\left\langle x^{n}\right\rangle=\int_{-\infty}^{\infty} d x x^{n} P(x)=\left.i^{n} \frac{\partial^{n} P(k)}{\partial k^{n}}\right|_{k=0}
\end{align*}
$$

Therefore

$$
\begin{equation*}
P(k)=\sum_{n=0}^{\infty} \frac{(-i k)^{n}}{n!} m_{n} \tag{33}
\end{equation*}
$$

Cumulants and Cumulant Generating Function

From the relation between the PDF and the characteristic function

$$
\begin{equation*}
P(x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x} P(k) \tag{34}
\end{equation*}
$$

a "Cumulant Generating Function" $\psi(k)$ is defined as

$$
\begin{equation*}
P(x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x} e^{\psi(k)} \tag{35}
\end{equation*}
$$

where $\psi(k)=\log [P(k)]$ is the function whose Taylor series coefficients at the origin $k=0$ are the "Cumulants".

$$
\begin{equation*}
c_{n}=\left.\frac{1}{i^{n}} \frac{\partial^{n} \psi(k)}{\partial k^{n}}\right|_{k=0} \tag{36}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\psi(k) & =-i k c_{1}-\frac{1}{2!} k^{2} c_{2} \ldots \\
& =\sum_{n=1}^{\infty} \frac{(-i k)^{n}}{n!} c_{n} \tag{37}
\end{align*}
$$

Comparing to the Characteristic function expansion in terms of moments

$$
\begin{equation*}
\psi(k)=\sum_{n=1}^{\infty} \frac{(-i k)^{n}}{n!} c_{n}=\log \left[\sum_{n=0}^{\infty} \frac{(-i k)^{n}}{n!} m_{n}\right] \tag{38}
\end{equation*}
$$

implies

- $c_{1}=m_{1}$ which is the "Mean"
- $c_{2}=m_{2}-m_{1}^{2}=\sigma^{2}$ which is the "Variance" [σ : Standard Deviation $]$
- $c_{3}=m_{3}-3 m_{1} m_{2}+2 m_{1}^{3}$ which is the "Skewness"
- $c_{4}=m_{4}-3 m_{2}^{2}-4 m_{1} m_{3}+12 m_{1}^{2} m_{2}-6 m_{1}^{4}$ which is the "Kurtosis"

Therefore

$$
\begin{equation*}
P(k)=\exp \left[\sum_{n=1}^{\infty} \frac{(-i k)^{n}}{n!} c_{n}\right]=\sum_{n=0}^{\infty} \frac{(-i k)^{n}}{n!} m_{n} \tag{39}
\end{equation*}
$$

which implies

$$
\begin{equation*}
P(k=1)=\exp \left[\sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!} c_{n}\right]=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} m_{n} \tag{40}
\end{equation*}
$$

Consider the following average

$$
\begin{align*}
\left\langle e^{-i \Phi(t)}\right\rangle & =\left\langle\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \Phi(t)^{n}\right\rangle \\
& =\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!}\left\langle\Phi(t)^{n}\right\rangle \\
& =\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} m_{n} \tag{41}\\
& =\exp \left[\sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!} c_{n}\right]
\end{align*}
$$

