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Ferromagnets (FM) are magnetically ordered materials characterized by the a spontaneous magnetization. Typ-
ically, FM have domains where the magnetization is uniform however a simple FM may have randomly oriented
domains. In the macrospin description, a FM has a single domain.

Magnetization i.e. magnetic moment per unit volume is proportional to the angular momentum and the coefficient
relating the two is the gyromagnetic ratio. It is well known that the rate of change of angular momentum is equal to
the torque. Thus in presence of an effective magnetic field, the dynamics of the magnetization can be simply described
by the equation of motion

dM
= —v(M x H.g) ~ : Gyromagnetic Ratio (1)

The first observation from this equation is that the magnitude of magnetization remains constant

dM
M~W:0:>|M\:constantEMS (2)

Thus, only the orientation of the magnetization vector changes under the effective magnetic field. For describing such
a system, it is particularly convenient to move to spherical coordinates characterized by (M, 6, ¢) where the relation
to cartesian coordinates is

M =sinflcos¢px + sinfsingy + cosf 2
0 = cosfcospd + cosOsing g —sinf 2 (3)
b= —singi+cosgi

The magnetic field in this coordinate system is
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FIG. 1. Coordinate System

H = Hy M + Hyf + Hyop
Hy; = sinf cos pH, + sinfsin ¢ Hy + cos 0 H,
Hy = cosfcos pH, + cosOsinpH, — sinH,
Hy = —sin¢pH, + cos pH,



Looking the the equation of motion for the z-component

dM,
= (M, H, — M, )
. df . .
= —sm@a = —ysinf(—sin pH, + cos pH,) (5)
de
=— =vH
di Yiig
and from the equation of motion for the x-component
dM,,
= (M, H. ~ M.H,)
. ., do db . .
= —sin#sin (ZSE + cos cos QSE = —(sin@sin pH. — cos 0 H,) (6)
do
inf— = —~vH
= sin p ~Hy
The effective magnetic field governing the magnetization dynamics can be derived from the free energy
1 dF
Hypg=——— 7
T M, ant @

and the free energy landscape of the magnet has contributions from the external field, the effective anisotropy
(anisotropy + demagnetization), random noise.
Given free energy density F, the equilibrium orientation of the magnetization can be determined by minimizing
the free energy density.
dr 0 ar
g do

If the magnetization deviates from the equilibrium position due to the action of the magnetic field components, the

0 = {60, d0} (8)
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FIG. 2. Magnetization changes due to small angle deviations.
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change in free energy can be related to the field components

d
dF = —M,dO Hy = Fyp = 7? = —M,Hy
iF ©)
dF = —M,sin0dg Hy :]:qg:@:—Mssin@H(t
Thus, the equation of motion of the angular coordinates can be expressed in terms of the free energy derivatives
db F
= ANH. — — ¢
dt e WMS sin 6 (10)
Fo

d
Sine£ =—vHy = 'yMS



Assuming that the angular deviations from equilibrium are small 60 = 0 — 0y < 0y and d¢p = ¢ — Py K ¢g, We can
Taylor expand the free energy in terms of derivatives

Fo = Foedl + fa¢5¢ f¢ = f¢9(59 + f¢¢(5¢ (11)

where the double derivatives Fgg, Fog, Fp0, Foe are evaluated at the equilibrium. Therefore the equations of motion
in the linearized regime of the small angular deviations are

doo ~
— = ————— [Fp900 + Fusd
dr = " dsing 0000 T Festd) 12
., dop v
Og—— = 00 )
sin o — M. [Fo908 + Fopd o)
Harmonic solutions 68 ~ e ¢ §¢ ~ e~ exist if
W2
FooFep — FeoFog + ?MSQ sin 98 =0 (13)
which provides the resonance frequency
Y
res — 35 - 14
Wres = 3 7singe VF00F o0 — FooFoo (14)

I. EXAMPLE: MAGNETIC THIN FILM WITH IN-PLANE MAGNETIZATION

Here we consider a magnetic thin film with in-plane equilibrium magnetization. The system has a uniaxial anisotropy
which makes the magnetization align in the equilibrium direction. It also has a perpendicular magnetic anisotropy
which includes both the demagnetization field and the interface field due to the substrate. The general free energy

FIG. 3. Schematic of the in-plane magnet.

density for such a ferromagnet with in-plane equilibrium magnetization has the following pieces (in terms of the unit
magnetization vector M = [mg, my, m.]):

e Zeeman term due to external applied field (along z-axis): F, = —Mj M- -H= —M,Hm,

e Uniaxial anisotropy which prefers orientation along the z-axis: F, = —Km?
M - —_ . =
e Demagnetization: Fg = —78 M - H; where the demagnetizing field Hy; = —M N M. N is the demagnetization

tensor which for the considered thin film geometry has only non-zero N, = 4. Therefore Fy; = 2mrM2m?.



e Interface anisotropy: The presence of the interface between the magnet and substrate provides an additional
anisotropy due the difference in the material environment in the magnet and substrate. This effect is particularly
significant in thin films as the anisotropy affecting the entire film thickness is important to the orientation of
magnetization. In a simplest of explanations, one expects that the charges/ions close to the interface will want
the magnetization to orient perpendicular to the interface due to spin-orbit interaction (angular momentum
wants spins to align them along due to L - S) and crystal field effects. The free energy is of the form F; =

K
—t—zm2 = —K;m2. This is a very significant term as it explains the VCMA (Voltage Controlled Magnetic
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Anisotropy) effect.

The combination of the demagnetization energy and the interface anisotropy is referred to as the perpendicular
magnetic anisotropy (PMA). Thus the total free energy density for the system is

F=—M,Hm, — Km? 4+ 2rM?m?2 — K;m?

x

M 2K,
:—MsHmZ—ng-i- 9 |:47TMS— Msj|mg20 (15)

M
=—M,Hm, — Km? + 5 Hym?

2K,
where the PMA field is H, = [47rMS - ]Wt] From the free energy form, we can physically infer that for positive

S
H | , the magnet will preferably orient along the z-axis. However for negative H , there will be a critical external field
below which the magnet will prefer to orient along the x-axis. This control on the orientation of the magnetization is

provided by the VCMA effect. In terms of polar coordinates, the free energy is

M
F=—-M,Hm, — Km? + 7Hgnfc

u (16)
= —M,H sinfsin ¢ — K sin® 0 sin” ¢ + 73HL cos? 0
The equilibrium orientation of the magnet is determined by minimizing the free energy of the magnet
Fo = —MH cos0sin ¢ — 2K sin 6 cos 0 sin? ¢ — M H | sinfcos =0 (17)

Fo=—M,Hsinfcos¢p — 2K sin? 0sin ¢ cos ¢ = 0

From the above minimization conditions, we can infer that the angle ¢9 = 7/2. This is so because VCMA can shift
orientation of the magnetization in the x-z plane. Thus, the condition for 6 is given by

— MscosO[H+ (Hy, + H, )sinf] =0 (18)

where H, = 2K/M; - the uniaxial anisotropy field. This provides two possible solutions: 6 = 7/2 or sinf =
—H/ (Hy, + H.). We note that the polar angle 6 € [0, 7]. Thus

e For H,+H, >0,0=m/2.
e For H,+ H, <0and H < |Hp+ H,|,sinf = H/|H,+ H,|.

.FOer+HL<OaHdH>|Hk—|—Hl|,9=7T/2.

Case 1: § =n/2 and ¢ = /2

For evaluating the FMR frequency, we need to calculate the second derivatives of the free energy density at the
equilibrium.
Foo = M H sinfsin ¢ — 2K cos 20 sin ¢ — M H | cos20 = M H + 2K + M,H |
Fpo = —MsH cosfcos ¢ — 2K sin20sin ¢ cos ¢ = 0 = Fyy (19)
Fpp = MsHsin0sin ¢ — 2K sin? 0 cos 2¢ = M H + 2K



Therefore

_r
M sin 6y

= Ml\/(MSH 2K + M,H, ) (M,H + 2K)
S

2K 2K
’y\/< + M. + L) ( + M5>

=y (H+ Hy + Hy) (H + Hy,)

VFo0Fss — FooFoo

Wres =

Case 2: H,+H, = —|Hy+H.|<0;sind =H/|H, +H,| and ¢ =n/2

For evaluating the FMR frequency, we need to calculate the second derivatives of the free energy density at the
equilibrium.

Foo = M H sinfsin ¢ — 2K cos 20 sin? ¢ — M H | cos 20

M, H? 2H?
- M (Hh+H (1 —
|Hy + H | (Hi L>< (Hk+HL)2)
M, H? oM, H?
- s M (Hp 4+ H )4+
|H]<;+HJ_‘ ( k L) (Hk-l—HJ_)
M H?
=M,H,+H, |- ———
| Hie + Ho| |H), + H|| (21)

Fgo = —MoH cosfcos ¢ — 2K sin20sinpcosp = 0 = Fyy
Fsp = M HsinfOsing — 2K sin? 0 cos 2¢
M, H? a2
=+ 2K ———
|Hk+Hl‘ (Hk+HL)

L (Y
 |Hi+H.| |Hy + H_ |

Therefore

_ v _
Wres = M. s, VF00F s — FooFoo

- ¥ M ,H? (1+ H;
_Mssin9 |Hk+HJ_| ‘Hk+HJ_|

_ Hy, 2 _ 72
v\/(HlHHHL')[(HHHL) 1]

To summarize, the FMR frequency in different regimes are:

e For H,+H, >0,0=m/2:

M H?
) <M3|Hk+HL_ : >

|Hy + H | (22)

Wres = vV/(H + Hy, + Hy ) (H + Hy)

e For H,+ H, <0and H < |Hp+ H,|,sin0 = H/|H,+ H,|:

Hy
oo = (14 =5 ) [(Hy + HL)? — H?
Wres 7\/( +|H]<;+HJ_>[( K+ L) }

eFor H,+ H, <0and H > |H,+ H,|, 0 =m/2:

Wres =V (H + Hy + H, ) (H 4 Hy)



TABLE I. Summarizing the FMR frequency expressions:

FMR Resonance Frequency

Condition
Hy+H; >0 wres = v/ (H + Hy, + H.) (H + Hy)
. Hy,
Hy+H, <0and H < |Hy + H, |, sinf = H/|Hy + H, | Wres = Y4/ ( 1+ 5——— | [(Hr + H1)? — H?]
|H, + H |

Hy+Hi <0and H > |H, + H.|, 0 =7/2 Wres = Y/ (H + Hi + Hy) (H + Hy)
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