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Ferromagnets (FM) are magnetically ordered materials characterized by the a spontaneous magnetization. Typ-
ically, FM have domains where the magnetization is uniform however a simple FM may have randomly oriented
domains. In the macrospin description, a FM has a single domain.

Magnetization i.e. magnetic moment per unit volume is proportional to the angular momentum and the coefficient
relating the two is the gyromagnetic ratio. It is well known that the rate of change of angular momentum is equal to
the torque. Thus in presence of an effective magnetic field, the dynamics of the magnetization can be simply described
by the equation of motion

dM

dt
= −γ(M ×Heff) γ : Gyromagnetic Ratio (1)

The first observation from this equation is that the magnitude of magnetization remains constant

M · dM
dt

= 0⇒ |M | = constant ≡Ms (2)

Thus, only the orientation of the magnetization vector changes under the effective magnetic field. For describing such

a system, it is particularly convenient to move to spherical coordinates characterized by (M̂, θ̂, φ̂) where the relation
to cartesian coordinates is

M̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ

θ̂ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ

φ̂ = − sinφ x̂+ cosφ ŷ

(3)

The magnetic field in this coordinate system is

FIG. 1. Coordinate System

H = HMM̂ +Hθ θ̂ +Hφφ̂

HM = sin θ cosφHx + sin θ sinφHy + cos θHz

Hθ = cos θ cosφHx + cos θ sinφHy − sin θHz

Hφ = − sinφHx + cosφHy

(4)
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Looking the the equation of motion for the z-component

dMz

dt
= −γ(MxHy −MyHx)

⇒− sin θ
dθ

dt
= −γ sin θ(− sinφHx + cosφHy)

⇒dθ

dt
= γHφ

(5)

and from the equation of motion for the x-component

dMx

dt
= −γ(MyHz −MzHy)

⇒− sin θ sinφ
dφ

dt
+ cos θ cosφ

dθ

dt
= −γ(sin θ sinφHz − cos θHy)

⇒ sin θ
dφ

dt
= −γHθ

(6)

The effective magnetic field governing the magnetization dynamics can be derived from the free energy

Heff = − 1

Ms

dF
dM̂

(7)

and the free energy landscape of the magnet has contributions from the external field, the effective anisotropy
(anisotropy + demagnetization), random noise.

Given free energy density F , the equilibrium orientation of the magnetization can be determined by minimizing
the free energy density.

dF
dθ

= 0
dF
dφ

= 0 ⇒ {θ0, φ0} (8)

If the magnetization deviates from the equilibrium position due to the action of the magnetic field components, the

FIG. 2. Magnetization changes due to small angle deviations.

change in free energy can be related to the field components

dF = −MsdθHθ ⇒ Fθ =
dF
dθ

= −MsHθ

dF = −Ms sin θdφHφ ⇒ Fφ =
dF
dφ

= −Ms sin θHφ

(9)

Thus, the equation of motion of the angular coordinates can be expressed in terms of the free energy derivatives

dθ

dt
= γHφ = −γ Fφ

Ms sin θ

sin θ
dφ

dt
= −γHθ = γ

Fθ
Ms

(10)
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Assuming that the angular deviations from equilibrium are small δθ = θ − θ0 � θ0 and δφ = φ − φ0 � φ0, we can
Taylor expand the free energy in terms of derivatives

Fθ = Fθθδθ + Fθφδφ Fφ = Fφθδθ + Fφφδφ (11)

where the double derivatives Fθθ,Fθφ,Fφθ,Fφφ are evaluated at the equilibrium. Therefore the equations of motion
in the linearized regime of the small angular deviations are

dδθ

dt
= − γ

Ms sin θ
[Fφθδθ + Fφφδφ]

sin θ0
dδφ

dt
=

γ

Ms
[Fθθδθ + Fθφδφ]

(12)

Harmonic solutions δθ ∼ e−iωt, δφ ∼ e−iωt exist if

FθθFφφ −FφθFθφ +
ω2

γ2
M2
s sin θ2

0 = 0 (13)

which provides the resonance frequency

ωres =
γ

Ms sin θ0

√
FθθFφφ −FθφFφθ (14)

I. EXAMPLE: MAGNETIC THIN FILM WITH IN-PLANE MAGNETIZATION

Here we consider a magnetic thin film with in-plane equilibrium magnetization. The system has a uniaxial anisotropy
which makes the magnetization align in the equilibrium direction. It also has a perpendicular magnetic anisotropy
which includes both the demagnetization field and the interface field due to the substrate. The general free energy

FIG. 3. Schematic of the in-plane magnet.

density for such a ferromagnet with in-plane equilibrium magnetization has the following pieces (in terms of the unit

magnetization vector M̂ = [mx,my,mz]):

• Zeeman term due to external applied field (along z-axis): Fz = −Ms M̂ ·H = −MsHmz

• Uniaxial anisotropy which prefers orientation along the z-axis: Fu = −Km2
z

• Demagnetization: Fd = −Ms

2
M̂ ·Hd where the demagnetizing field Hd = −MsNM̂ . N is the demagnetization

tensor which for the considered thin film geometry has only non-zero Nxx = 4π. Therefore Fd = 2πM2
s m

2
x.
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• Interface anisotropy: The presence of the interface between the magnet and substrate provides an additional
anisotropy due the difference in the material environment in the magnet and substrate. This effect is particularly
significant in thin films as the anisotropy affecting the entire film thickness is important to the orientation of
magnetization. In a simplest of explanations, one expects that the charges/ions close to the interface will want
the magnetization to orient perpendicular to the interface due to spin-orbit interaction (angular momentum
wants spins to align them along due to L · S) and crystal field effects. The free energy is of the form Fi =

−Ki

tfm
m2
x ≡ −Ktm

2
x. This is a very significant term as it explains the VCMA (Voltage Controlled Magnetic

Anisotropy) effect.

The combination of the demagnetization energy and the interface anisotropy is referred to as the perpendicular
magnetic anisotropy (PMA). Thus the total free energy density for the system is

F = −MsHmz −Km2
z + 2πM2

s m
2
x −Ktm

2
x

= −MsHmz −Km2
z +

Ms

2

[
4πMs −

2Kt

Ms

]
m2
x

= −MsHmz −Km2
z +

Ms

2
H⊥m

2
x

(15)

where the PMA field is H⊥ =

[
4πMs −

2Kt

Ms

]
. From the free energy form, we can physically infer that for positive

H⊥, the magnet will preferably orient along the z-axis. However for negative H⊥, there will be a critical external field
below which the magnet will prefer to orient along the x-axis. This control on the orientation of the magnetization is
provided by the VCMA effect. In terms of polar coordinates, the free energy is

F = −MsHmz −Km2
z +

Ms

2
H⊥m

2
x

= −MsH sin θ sinφ−K sin2 θ sin2 φ+
Ms

2
H⊥ cos2 θ

(16)

The equilibrium orientation of the magnet is determined by minimizing the free energy of the magnet

Fθ = −MsH cos θ sinφ− 2K sin θ cos θ sin2 φ−MsH⊥ sin θ cos θ ≡ 0

Fφ = −MsH sin θ cosφ− 2K sin2 θ sinφ cosφ ≡ 0
(17)

From the above minimization conditions, we can infer that the angle φ0 = π/2. This is so because VCMA can shift
orientation of the magnetization in the x-z plane. Thus, the condition for θ is given by

−Ms cos θ [H + (Hk +H⊥) sin θ] = 0 (18)

where Hk = 2K/Ms - the uniaxial anisotropy field. This provides two possible solutions: θ = π/2 or sin θ =
−H/ (Hk +H⊥). We note that the polar angle θ ∈ [0, π]. Thus

• For Hk +H⊥ > 0, θ = π/2.

• For Hk +H⊥ < 0 and H < |Hk +H⊥|, sin θ = H/|Hk +H⊥|.

• For Hk +H⊥ < 0 and H > |Hk +H⊥|, θ = π/2.

Case 1: θ = π/2 and φ = π/2

For evaluating the FMR frequency, we need to calculate the second derivatives of the free energy density at the
equilibrium.

Fθθ = MsH sin θ sinφ− 2K cos 2θ sin2 φ−MsH⊥ cos 2θ = MsH + 2K +MsH⊥

Fφθ = −MsH cos θ cosφ− 2K sin 2θ sinφ cosφ = 0 ≡ Fθφ
Fφφ = MsH sin θ sinφ− 2K sin2 θ cos 2φ = MsH + 2K

(19)
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Therefore

ωres =
γ

Ms sin θ0

√
FθθFφφ −FθφFφθ

=
γ

Ms

√
(MsH + 2K +MsH⊥) (MsH + 2K)

= γ

√(
H +

2K

Ms
+H⊥

)(
H +

2K

Ms

)
= γ

√
(H +Hk +H⊥) (H +Hk)

(20)

Case 2: Hk +H⊥ = −|Hk +H⊥| < 0; sin θ = H/|Hk +H⊥| and φ = π/2

For evaluating the FMR frequency, we need to calculate the second derivatives of the free energy density at the
equilibrium.

Fθθ = MsH sin θ sinφ− 2K cos 2θ sin2 φ−MsH⊥ cos 2θ

=
MsH

2

|Hk +H⊥|
−Ms (Hk +H⊥)

(
1− 2H2

(Hk +H⊥)2

)
=

MsH
2

|Hk +H⊥|
−Ms (Hk +H⊥) +

2MsH
2

(Hk +H⊥)

= Ms|Hk +H⊥| −
MsH

2

|Hk +H⊥|
Fφθ = −MsH cos θ cosφ− 2K sin 2θ sinφ cosφ = 0 ≡ Fθφ
Fφφ = MsH sin θ sinφ− 2K sin2 θ cos 2φ

=
MsH

2

|Hk +H⊥|
+ 2K

H2

(Hk +H⊥)2

=
MsH

2

|Hk +H⊥|

(
1 +

Hk

|Hk +H⊥|

)

(21)

Therefore

ωres =
γ

Ms sin θ0

√
FθθFφφ −FθφFφθ

=
γ

Ms sin θ

√
MsH

2

|Hk +H⊥|

(
1 +

Hk

|Hk +H⊥|

)(
Ms|Hk +H⊥| −

MsH
2

|Hk +H⊥|

)

= γ

√(
1 +

Hk

|Hk +H⊥|

)
[(Hk +H⊥)2 −H2]

(22)

To summarize, the FMR frequency in different regimes are:

• For Hk +H⊥ > 0, θ = π/2:

ωres = γ
√

(H +Hk +H⊥) (H +Hk)

• For Hk +H⊥ < 0 and H < |Hk +H⊥|, sin θ = H/|Hk +H⊥|:

ωres = γ

√(
1 +

Hk

|Hk +H⊥|

)
[(Hk +H⊥)2 −H2]

• For Hk +H⊥ < 0 and H > |Hk +H⊥|, θ = π/2:

ωres = γ
√

(H +Hk +H⊥) (H +Hk)
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TABLE I. Summarizing the FMR frequency expressions:

Condition FMR Resonance Frequency

Hk +H⊥ > 0 ωres = γ
√

(H +Hk +H⊥) (H +Hk)

Hk +H⊥ < 0 and H < |Hk +H⊥|, sin θ = H/|Hk +H⊥| ωres = γ

√(
1 +

Hk

|Hk +H⊥|

)
[(Hk +H⊥)2 −H2]

Hk +H⊥ < 0 and H > |Hk +H⊥|, θ = π/2 ωres = γ
√

(H +Hk +H⊥) (H +Hk)
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