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Einstein’s A Coefficient is related to the spontaneous emission of light. Let us consider the Hamiltonian for a free
particle

H0 =
p2

2m
(1)

In presence of an electromagnetic field, the canonical momentum of this particle gets modified as per the Peierl’s
substitution

~p→ ~p− e

c
~A (2)

where ~A is the magnetic vector potential corresponding to the electromagnetic field. Upon substitution, the Hamil-
tonian can be expanded in orders of the vector potential where we keep terms upto linear order,

H = H0 + U +O(A2) where U = − e

mc
~A · ~p (3)

Let us now consider the radiation to be monochromatic

~A = ε̂sA cos(~k · ~r − ωt) (4)

where ε̂s is the polarization of the field. This implies

U = − eA

2mc

[
ei
~k·~re−iωt + e−i

~k·~reiωt
]
ε̂s · ~p

= U(~k)e−iωt + U(−~k)eiωt

Absorption Stimilated Emission

(5)

where

U(~k) = − eA

2mc
ei
~k·~r ε̂s · ~p (6)

Given the size of the atomic particle is small compared to the wavelength of the radiation, we can invoke the dipole

approximation (~k · ~r � 1 which implies ~k → 0),

U(~k = 0) = − eA

2mc
ε̂s · ~p (7)

Let us now consider the commutation relation

[H0, ~r] = − i~
m
~p ⇒ ~p =

im

~
[H0, ~r] (8)

Since, the primary effect of exposure to EM field is transition between states, let us consider a transition matrix
element

〈n|U(~k = 0)|m〉 = − eA

2mc
ε̂s · 〈n|~p|m〉

= − eA

2mc

im

~
ε̂s · 〈n|[H0, ~r]|m〉

= i
Aω

2c
ε̂s · ~dfi

(9)

where ω0 = (En−Em)/~ and ~dfi = 〈n| − e~r|m〉. This matrix element allows us to compute the transition rates using
Fermi’s Golden rule.
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A. Absorption Rate

The absorption rate as determined by the Fermi’s Golden rule is

W abs
f←i =

2π

~
∑
~k,s

|〈n|U(~k = 0)|m〉|2δ (En − Em − ~ω)

=
2π

~

∫
dΩ

∫
d(~ω) ρ(~ω)

∑
s

|〈n|U(~k = 0)|m〉|2δ (En − Em − ~ω)

(10)

where the sum over all polarizations and over all wavevectors is accounted for. We thus need to now quantify the
density of states for EM radiation,

V
d3k

(2π)3
= ρ(~ω)d(~ω)dΩ ⇒ ρ(~ω)dΩ =

V

8π3

(ω
c

)2 1

~c
dΩ (11)

Through the square of the matrix element in the rate expression, we will have quadratic dependence of the vector
potential. This is proportional to the intensity of radiation and thus can be related to the energy in the radiation
field. Let us consider the energy of N monochromatic photons in the radiation, then

~A = ε̂sA cos(~k · ~r − ωt) ⇒ ~E = −ω
c
ε̂sA sin(~k · ~r − ωt) ~B = −ω

c
(k̂ × ε̂s)A sin(~k · ~r − ωt) (12)

Therefore,

N~ω =

∫
d~r

1

T

∫ T=2π/ω

0

dt
E2 +B2

8π

=
V

8π

(ω
c

)2
A2

(13)

where the time average over the period of the radiation is 〈sin2(~k · ~r − ωt)〉 = 1/2. With these relations, we can now
evaluate the absorption rate,

W abs
f←i =

2π

~

∫
d(~ω)

V

8π

(ω0

c

)2∑
s

∫
dΩ

A2ω2

4c2
|ε̂s · ~dfi|2δ (En − Em − ~ω)

=
1

4

2π

~
V A2

8π3~c

(ω0

c

)4 ∫
dΩ
[
|ε̂1 · ~dfi|2 + |ε̂2 · ~dfi|2

] (14)

We note that for EM fields, the directions {ε̂1, ε̂2, k̂} form an orthogonal triad. Therefore,

~dfi = (~dfi · ε̂1)ε̂1 + (~dfi · ε̂2)ε̂2 + (~dfi · k̂)k̂ (15)

which implies

|ε̂1 · ~dfi|2 + |ε̂2 · ~dfi|2 = |~dfi|2 − |~dfi · k̂|2 (16)

Without loss of generality, we can choose the z-axis along the dipole transition element. Consequently, we can carry
out the angular integral over the solid angle,∫

dΩ[|~dfi|2 − |~dfi · k̂|2] =

∫
dθ sin θ

∫
dφ |~dfi|2 sin2 θ =

8π

3
|~dfi|2 (17)

Thus, we can finally evaluate the absorption rate,

W abs
f←i = N

4

3~

(ω0

c

)3
|~dfi|2 (18)

B. Stimulated Emission Rate

We can similarly follow the steps to evaluate the rate of stimulated emission

W st.em.
f←i = N

4

3~

(ω0

c

)3
|~dfi|2 (19)
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C. Spontaneous Emission

In this case, the excited state spontaneously decays emitting a single photon. Thus, we can extend the earlier to
the case of a single photon and write the rate of spontaneous emission

W sp.em.
f←i =

4

3~

(ω0

c

)3
|~dfi|2 (20)

The above expression is the Einstein A-Coefficient.
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