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I. EPR PARADOX

Einstein - Podolsky - Rosen (EPR) paradox is a thought experiment that was proposed to argue that the physical
description of nature as described by quantum mechanics was incomplete. What this means that the three physi-
cists believed that there was more to quantum mechanics i.e. hidden variables that determined the outcomes of
experiments. The use of probability when it came to statistical mechanics was mainly due the fact that there was
incomplete information known about the system when it came to a large number of degrees of freedom. However,
what they did not accept was that quantum mechanics if complete should not be probabilistic. Thus, came forward
the ‘hidden variable theory’.
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For the thought experiment, let us imagine that we have two observers Alice and Bob who are spatially separated
by a long distance. Midway between them is an unstable nucleus that decays emitting an electron that propagates
towards Alice and a positron that propagates towards Bob. What everyone can agree on is the conservation of angular
momentum before and after the decay. What this implies that the spins of the electron and positron if measured
along the same quantization axis will be opposite. Let us assume that Alice makes a measurement on the spin of the
electron first along the quantization axis of her choice namely ~a and measures +1/2. Now, if Bob were to measure
the spin of the positron along the same quantization axis i.e. ~a, then he will find the spin to be -1/2. This implies
that there exists correlation between the measurements.

Let us now consider the predictions of quantum mechanics of these measurements. Without loss of generality, we
can choose z-axis to be along ~a (the direction along which Alice measures the spin). Thus, before Alice measures, the
quantum mechanical state of the electron-positron system can be written as

|Ψ〉 =
1√
2

[|e, ↑~z〉|p, ↓~z〉 − |e, ↓~z〉|p, ↑~z〉] (1)

After Alice measures the electron’s spin and finds it to be +1/2, the state of the system collapses to

|Ψ〉 = |e, ↑~z〉|p, ↓~z〉 (2)

At this point, Bob is free to make a choice on the spin measurement axis and say he chooses to measure the spin of

positron along ~b at an angle (θ, φ) wrt the z-axis. The spin state with quantum number +1/2 along ~b can be related
to the spin state along ~z (which is nothing but the change of basis),

|p, ↑~b〉 = cos
θ

2
e−iφ/2|p, ↑~z〉+ sin

θ

2
eiφ/2|p, ↓~z〉 (3)

Thus, the probability that Bob measures +1/2 along ~b can be evaluated by the Born rule

P (~b,+1/2) = |〈p, ↑~b |p, ↓~z〉|
2 = sin2 θ

2

P (~b,−1/2) = |〈p, ↓~b |p, ↓~z〉|
2 = cos2

θ

2

(4)

So far we have made no restrictions on the speeds with which the electron and positron moves. So let us now consider
that they move at relativistic speeds and Alice and Bob make their measurement in the rest frame of the electron
and positron. Now if we consider that Alice and Bob make the measurements simultaneously, then there is no way
that a signal could have traveled from Alice’s measurement on electron to Bob. So the paradox is that if there is
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no transfer of information, how is it possible that Bob’s measurement depends on the outcome of Alice’s measurement.

This led the EPR team to conclude that the information relating to the outcomes of the measurements must be
pre-ordained in the state of the electron and positron. The variable in which this information is pre-ordained were
referred to as Hidden Variables.

II. BELL’S INEQUALITY

John Bell derived an inequality that would test if quantum mechanics is consistent with the hidden variables theory
or not.

A. Quantum Mechanical Prediction

To derive this inequality, let us label the measurement of the spin of the electron made by Alice along ~a as σe(~a)

which can be ±1/2. Similarly, the measurement of the spin of the positron made by Bob along ~b as σp(~b) which can
be ±1/2. Let us look at the expectation value of σeσp given that Bob measures the spin of the positron soon after
Alice measures the spin of electron,

〈σe(~a)σp(~b)〉 =
1
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where P (~a,±1/2) is the probability for Alice to measure ±1/2 and P (~b, α|~a, β) is the conditional probability for Bob
to measure the spin of positron to be α given that Alice measures the spin of electron to be β.

From quantum mechanics, we know that
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which implies that quantum predicts

〈σe(~a)σp(~b)〉 = −1

4
cos θ = −1

4
~a ·~b (7)

B. Hidden Variable Theory Prediction

The hidden variable theory is based on a set of variables ~v that define the outcome of the measurements such that

σe(~v,~a) = ±1

2
σp(~v,~b) = ±1

2
(8)

and the conservation of angular momentum requires that if the measurement axis for Alice and Bob are the same,
then

σe(~v,~a) = −σp(~v,~a) (9)
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Thus, as per the hidden variable theory, any measurement or expectation value needs to be averaged over the hidden
variables via a probability distribution function ρ(~v), such that

〈σe(~a)σp(~b)〉~v =

∫
d~v ρ(~v)σe(~v,~a)σp(~v,~b)

= −
∫
d~v ρ(~v)σe(~v,~a)σe(~v,~b)

(10)

Let us now consider

〈σe(~a)σp(~b)〉~v − 〈σe(~a)σp(~c)〉~v = −
∫
d~v ρ(~v)σe(~v,~a)

[
σe(~v,~b)− σe(~v,~c)

]
= −

∫
d~v ρ(~v)σe(~v,~a) 4σ2

e(~v,~b)
[
σe(~v,~b)− σe(~v,~c)

]
= −

∫
d~v ρ(~v)σe(~v,~a)σe(~v,~b)

[
1− 4σe(~v,~b)σe(~v,~c)

] (11)

Here, we have used the fact that σ2
e(~v,~a) = 1/4. We note that the terms in the square brackets is positive definite

since the product σe(~v,~b)σe(~v,~c) can only take values ±1/4. Thus, 1− 4σe(~v,~b)σe(~v,~c) ≥ 0. Given this, we can look
at the absolute value of the left hand side (LHS) and utilizing the identity that |

∫
d~v f(~v)| ≤

∫
d~v |f(~v)|, we find that

|〈σe(~a)σp(~b)〉~v − 〈σe(~a)σp(~c)〉~v| ≤
∫
d~v ρ(~v)

1

4

[
1− 4σe(~v,~b)σe(~v,~c)

]
(12)

where we have used the fact that |σe(~v,~a)| = |σe(~v,~b)| = 1/2. Thus,

|〈σe(~a)σp(~b)〉~v − 〈σe(~a)σp(~c)〉~v| ≤
1

4

[
1− 4

∫
d~v ρ(~v)σe(~v,~b)σe(~v,~c)

]
≤ 1

4

[
1− 4〈σe(~v,~b)σe(~v,~c)〉~v

]
≤ 1

4

[
1 + 4〈σe(~v,~b)σp(~v,~c)〉~v

] (13)

This is referred to as Bell’s inequality.

FIG. 1. Left and right hand side of Bell’s inequality.

The question we address next is: Is quantum mechanics consistent with Bell’s inequality?
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From quantum mechanics, 〈σe(~v,~a)σp(~v,~b)〉 = −1

4
~a ·~b. Thus, we can evaluate the LHS and RHS of the inequality

using this

LHS =
1

4
|~a · (~b− ~c)| RHS =

1

4
[1−~b · ~c] (14)

If quantum mechanics is consistent with the hidden variable theory, then Bell’s inequality must be satisfied irrespective

of the choice of ~a, ~b, and ~c. Let us choose ~a ·~b = 0 and ~c = sinψ~a + cosψ~b where ~a is orthogonal to ~b and ψ is the

angle between ~c and ~b. With this choice,

LHS =
1

4
| sinψ| RHS =

1

4
[1− cosψ] (15)

From this we can see that LHS ≥ RHS for all ψ within the range from 0 to π/2 which contradicts Bell’s inequality.

Thus, we can conclude that quantum mechanics is inconsistent with the hidden variable theory.
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