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The objective is to evaluate the Band Gap Renormalization (BGR) using the single plasmon pole
approximation (SPPA) for the dielectric constant.

BGR can be simply estimated through the change in energy dispersion due to interaction i.e. Self energy. Consid-
ering the screened interaction W (q, iqn) (in Matsubara formalism), we can simply compute the self energy using the
G0W approximation.

FIG. 1. Self Energy Diagram

Σ(k, ikn) = − 1

β

∑
q,iqn

W (q, iqn)G0(k + q, ikn + iqn) (1)

where the non-interacting Green function

G0(k + q, ikn + iqn) =
1

ikn + iqn − εk+q
(2)

and the screened interaction W (q, iqn) is

W (q, iqn) =
V (q)

ε(q, iqn)
= V (q) + V (q)

[
1

ε(q, iqn)
− 1

]
(3)

The plasmon-pole approximation is used to construct the full dielectric function ε(q, iqn) which replaces the continuum
of poles in the Lindhard function by one effective plasmon-pole ωq. Therefore

1

ε(q, iqn)
= 1 +

ω2
p

(iqn)2 − ω2
q

(4)

Therefore

Σ(k, ikn) = − 1

β

∑
q,iqn

[
V (q) + V (q)

[
1

ε(q, iqn)
− 1

]]
G0(k + q, ikn + iqn)

= − 1

β

∑
q,iqn

V (q)G0(k + q, ikn + iqn)− 1

β

∑
q,iqn

V (q)

[
1

ε(q, iqn)
− 1

]
G0(k + q, ikn + iqn)

= Σx(k, ikn) + Σc(k, ikn)

(5)

where the exchange and correlation self energy terms can be evaluated.

Σx(k, ikn) = − 1

β

∑
q,iqn

V (q)G0(k + q, ikn + iqn) = −
∑
q

V (q)fk+q (6)
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where fk+q is the Fermi-Dirac distribution function,

Σc(k, ikn) = − 1

β

∑
q,iqn

V (q)

[
1

ε(q, iqn)
− 1

]
G0(k + q, ikn + iqn)

= − 1

β

∑
q,iqn

V (q)
ω2
p

(iqn)2 − ω2
q

G0(k + q, ikn + iqn)

=
∑
q

V (q)
ω2
p

2ωq

[
fk+q + gq

ikn − εk+q + ωq
+

1− fk+q + gq
ikn − εk+q − ωq

] (7)

and gq = 1/(exp(ωq/T ) − 1). Thus the renormalization of band edge due to carriers can be evaluated by analytic
continuation of the self energy and setting momenta to the band extrema location: ω = εk and k = 0 here.

∆E = Σ(k, εk)|k=0 (8)

This is also refereed to as the rigid band shift.

BGR IN 2D ELECTRON-HOLE SYSTEM

In 2D, considering an electron hole plasma with a reduced mass m: m−1 = m−1
e + m−1

h , the electrons cause shift
in the CB minima and the holes cause shift of the VB maxima. Thus the BGR will have contribution from both the
species of charge carriers

∆EG = Σe(k, εk)|k=0 + Σh(k, εk)|k=0

= −
∑

q,i={e,h}

V (q)fi,q +
∑

q,i={e,h}

V (q)
ω2
p

2ωq

[
fi,q + gq

εi,0 − εi,q + ωq
+

1− fi,q + gq
εi,0 − εi,q − ωq

]
(9)

In accordance with Schmitt-Rink et. al [Solid State Communications, Vol.52, No.2, pp.123-125, 1984], we express all
lengths and energies in units of exciton Bohr radius and Rydberg.

a0 =
ε0

2me2
E0 =

1

2ma2
0

=
e2

ε0a0
(10)

Therefore

• Interaction potential V (q) =
2πe2

ε0q
=

2πa2
o

qa0
E0

• Plasma Frequency ω2
p =

2πne2q

ε0m
= 4π(na2

0)(qa0)E2
0

• Energy dispersion εi =
k2

2mi
=

m

mi
(ka0)2E0 where i = {e, h} [Spin Degenerate]

• Number Density n = 2
∑
k fi,k ⇒ na2

0 =
T̄

2π

mi

m
Ln(1 + exp(µ̄i/T̄ )) where T = T̄E0

• Chemical Potential µ̄i = T̄ Ln

[
exp

(
2πn(na2

0)

T̄mi

)
− 1

]

• Thomas Fermi Screening wavenumber κ =
2πe2

ε0

∑
i

∂n

∂µi
where µi = µ̄iE0 is the chemical potential ⇒ κa0 =

2π

[
∂(na2

0)

∂µ̄e
+
∂(na2

0)

∂µ̄h

]
=
me

m

1

1 + e−µ̄e/T̄
+
mh

m

1

1 + e−µ̄h/T̄
.

• Plasmon Pole with Lundquist correction ω2
q = ω2

p(1 + q/κ) + (εe,q + εh,q)
2/4

Thus computing the BGR for Coulomb interaction in 2D where the expression −3.1(na2
0)1/3E0 is a good approximation

to BGR for T=0.
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FIG. 2. BGR - Coulomb in 2D - in units of E0. Temperatures are in units of E0.
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